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1
INTRODUCTION

Unique among disciplines, physics condenses the limitlessly complex behavior of
nature into a small set of underlying principles. Once these are clearly understood
and supplemented with often superficial domain knowledge, any scientific or engi-
neering problem can be succinctly analyzed and solved. Accordingly, the study of
physics leads to unsurpassed satisfaction and fulfillment.

This book summarizes intermediate-, college-, and university-level physics and its
associated mathematics, identifying basic formulas and concepts that should be under-
stood and memorized. It can be employed to supplement courses, as a reference text or
as review material for the GRE and graduate comprehensive exams.

Since physics incorporates broad areas of science and engineering, many treat-
ments overemphasize technical details and problems that require time-consuming
mathematical manipulations. The reader then often loses sight of fundamental issues,
leading to gaps in comprehension that widen as more advanced material is introduced.
This book accordingly focuses exclusively on core material relevant to practical prob-
lem solving. Fine details of the subject can later be assimilated rapidly, effectively
placing leaves on the branches formed by the underlying concepts.

Mathematics and physics constitute the language of science. Hence, as with any
spoken language, they must be learned through repetition and memorization. The cen-
tral results and equations indicated in this book are therefore indicated by shaded text.
These should be rederived, transcribed into a notebook or review cards with a sum-
mary of their derivation and memorized. Problems from any source should be solved
in conjunction with this book; however, undertaking time-consuming problems

Fundamental Math and Physics for Scientists and Engineers, First Edition.
David Yevick and Hannah Yevick.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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without recourse to worked solutions that indicate optimal calculational procedures is
not recommended.

Finally, we wish to thank our many inspiring teachers, whose numerous insights
guided our approach, in particular Paul Bamberg, Alan Blair, and Sam Treiman, and,
above all, our father and grandfather, George Yevick, whose boundless love of phys-
ics inspired generations of students.
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2
PROBLEM SOLVING

Problem solving, especially on examinations, should habitually follow the procedures
below.

2.1 ANALYSIS

1. Problems are very often misread or answered incompletely. Accordingly, circle
the words in the problem that describe the required results and underline the
specified input data. After completing the calculation, insure that the quantities
evaluated in fact correspond to those circled.

2. Write down a summary of the problem in your own words as concisely as
possible.

3. Draw a diagram of the physical situation that suggests the general properties
of the solution. Annotate the diagram as the solution progresses. Always draw

diagrams that accentuate the difference between variables, e.g., when drawing

triangles, be sure that its angles are markedly unequal.

4. Briefly contrast different solution methods and summarize on the examination
paper the simplest of these (especially if partial credit is given).

5. Solve the problem, proceeding in small steps. Do not perform twomathematical

manipulations in a single line. Align equal signs on subsequent lines and check

Fundamental Math and Physics for Scientists and Engineers, First Edition.
David Yevick and Hannah Yevick.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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each line of the calculation against the previous line immediately after writing

it down. Being careful and organized inevitably saves time.

6. Reconsider periodically if you are employing the simplest solution method. If

mathematics becomes involved, backtrack and search for an error or a different

approach.

7. Verify the dimensions of your answer and that its magnitude is physically

reasonable.

8. Insert your answer into the initial equations that define the problem and check

that it yields the correct solution.

9. If necessary and time permits, solve the problem a second time with a different
method.

2.2 TEST-TAKING TECHNIQUES

Strategies for improving examination performance include:

1. For morning examinations, 1–3 weeks before the examination, start the day
two or more hours before the examination time.

2. Devise a plan of studying well before the examination that includes several
review cycles.

3. Outline on paper and review cards in your own words the required material.
Carry the cards with you and read them throughout the day when unoccupied.

4. To become aware of optimal solution procedures, solve a variety of problems
in books that provide worked solutions and rederive the examples in this or
another textbook. Limit the time spent on each problem in accordance with
the importance of the topic.

5. Obtain or design your own practice exams and take these under simulated test
conditions.

6. In the day preceding a major examination, at most, briefly review notes—
studies have demonstrated that last-minute studying does not on average
improve grades.

7. Be aware of the examination rules in advance. On multiple choice exams,
determining how many answers must be eliminated before selecting one of
the remaining choices is statistically beneficial.

8. If allowed, take high-energy food to the exam.

9. Arrive early at the examination location to familiarize yourself with the test
environment.

10. First, read the entire examination and then solve the problems in order of

difficulty.

4 PROBLEM SOLVING
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11. Maintain awareness of the problem objective; sometimes, a solution can be
worked backward from this knowledge.

12. If a calculation proves more complex than expected, either outline your solu-

tion method or address a different problem and return to the calculation later,

possibly with a different perspective.

13. For multiple choice questions, insure that the solutions are placed correctly on
the answer sheet. Write the number of the problem and the answer on a piece
of paper and transfer this information onto the answer sheet only at the end of
the exam. Retain the paper in case of grading error.

14. On multiple choice tests, examine the possible choices before solving the

problem. Eliminate choices with incorrect dimensions and those that lack

physical meaning. Those remaining often indicate the important features of
the solution and possibly may even reveal the correct answer.

15. Maintain an even composure, possibly through short stretching or controlled
breathing exercises.

2.2.1 Dimensional Analysis

Results can be partially verified through dimensional analysis. Dimensions such as those
of force, [MD/T2], are here distinguished by square brackets, where, e.g., D indicates
length, T time,M mass, and Q charge. Quantities that are added, subtracted, or equated

must possess identical dimensions. For example, a = v/t is potentially valid since the
right-hand side dimension of this expression is the product [D/T][1/T], which agrees with
that of the left-hand side. Similarly, the argument of a transcendental function (a function

that can be expressed as an infinite power series), such as an exponential or harmonic

function or of polynomials such as f(x) = x + x2, must be dimensionless; otherwise, dif-
ferent powers would possess different dimensions and could therefore not be summed.

While the dimensions of important physical quantities should be memorized, the
dimensions of any quantity can be deduced from an equation expressing this quantity
in terms of variables with known dimensions. Thus, e.g., F =ma implies that [F] = [M]
[D/T2] = [MD/T2]. Quantities with involved dimensions are often expressed in terms
of other standard variables such as voltage.

Example

From Q = CV, the units of capacitance can be expressed as [Q/V], with V repre-
senting volts. Subsequently, from V = IR with I = dQ/dt, the dimensions of, e.g.,
t = 1/RC can be verified.

5TEST-TAKING TECHNIQUES
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3
SCIENTIFIC PROGRAMMING

This text contains basic physics programs written in the Octave scientific program-
ming language that is freely available from http://www.gnu.org/software/octave/
index.html with documentation at www.octave.org. Default selections can be chosen
during setup. Octave incorporates many features of the commercial MATLAB® lan-
guage and facilitates rapid and compact coding (for a more extensive introduction,
refer to A Short Course in Computational Science and Engineering: C++, Java and
Octave Numerical Programming with Free Software Tools, by David Yevick
Copyright © 2012 David Yevick). Some of the material in the following text is
reprinted with permission from Cambridge University Press.

3.1 LANGUAGE FUNDAMENTALS

A few important general programming concepts as applied to Octave are first sum-
marized below:

1. A program consists primarily of statements that result from terminating a valid
expression not followed by the continuation character … (three lower dots), a
carriage return, or a semicolon.

2. An expression can be formed from one or more subexpressions linked by
operators such as + or *.

Fundamental Math and Physics for Scientists and Engineers, First Edition.
David Yevick and Hannah Yevick.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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3. Operators possess different levels of precedence, e.g., in 2/4 + 3, the division
operation possesses a higher precedence and is therefore evaluated before addi-
tion. In expressions involving two or more operators with the same precedence
level, such as division and multiplication, the operations are typically evaluated
from left to right, e.g., 2/4 * 3 equals (2/4) * 3.

4. The parenthesis operator, which evaluates the expression that it encloses, is
assigned to the highest precedence level. This eliminates errors generated by
incorrect use of precedence or associativity.

5. Certain style conventions, while not required, enhance clarity and readability:

a. Variables and function names should be composed of one or more descrip-
tive words. The initial letter should be uncapitalized, while the first letter of
each subsequent word should be capitalized as in outputVelocity.

b. Spaces should be placed to the right and left of binary operators, which act
on the expressions (operands) to their left and right, as in 3 + 4, but no space
should be employed in unary operator such as the negative sign in −3 + 4.
Spaces are preferentially be inserted after commas as in computeVelo-
city( 3, 4 ) and within parentheses except where these indicate indices.

c. Indentation should be employed to indicate when a group of inner statements
is under the logical control of an outer statement such as in

if ( firstVariable == 0 )
secondVariable = 5;

end

d. Any part of a line located to the right of the symbol % constitutes a comment
that typically documents the program. Statements that form a logical unit
should be preceded by one or more comment lines and surrounded by blank
lines. Statement lines that introduce input variables should end with a com-
ment describing the variables.

3.1.1 Octave Programming

Running Octave: Starting Octave opens a command window into which statements
can be entered interactively. Alternatively, a program in the directory programs
in partition C: is created by first entering cd C:\programs into the command win-
dow, pressing the enter key, and then entering the command edit. Statements are
then typed into the program editor, the file is saved by selecting Save from the button
or menu bar as a MATrix LABoratory file such as myFile.m (the .m extension is
appended automatically by the editor), and the program is then run by typing myFile
into the command window. The program can also be activated by including the
statement myFile; within another program. To list the files in the current directory,
enter dir into the Octave command window.

Help Commands: Typing help commandName yields a description of the
command commandName. To find all commands related to a word subject, type

7LANGUAGE FUNDAMENTALS
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lookfor subject. Entering doc or doc topic brings up, respectively, a com-
plete help document and a description of the language feature topic.

Input and Output: A value of a variable G can be entered into a program (.m file)
from the keyboard by including the line G = input( ‘user prompt’ ). The state-
ment format long e sets the output style to display all 15 floating-point number
significant digits, after which format short e reverts to the default 5 output digits.

Constants and Complex Numbers: Some important constants are i and j, which
both equal

ffiffiffiffiffiffiffi
−1

p
, e, and pi. However, if a variable assignment such as i = 3; is

encountered in an Octave program, i ceases to be identified with the imaginary unit
until the command clear i is issued. Imaginary numbers can be manipulated with
the functions real( ), imag( ), conj( ), and norm( ), and imaginary values are
automatically returned by standard functions such as exp( ), sin( ), and sinh( )
for imaginary arguments.

Arrays and Matrices: A symbol A can represent a scalar, row, or column vector or
matrix of any dimension. Row vectors are constructed either by

vR = [ 1 2 3 4 ];

or

vR = [ 1, 2, 3, 4 ];

The corresponding column vector can similarly be entered in any of the following
three ways:

vC = [ 1
2
3
4 ];

vC = [ 1; 2; 3; 4 ];
vC = [ 1 2 3 4 ].’;

Here .’ indicates transpose, while ’ instead implements the Hermitian (complex con-
jugate) transpose.

A 2 × 2 matrix

mRC=
1 2
3 4

� �

can be constructed by, e.g., mRC = [ 1 2; 3 4 ]; after which mRC(1, 2) returns
(MRC)12, here the value 2. Subsequently, size(mRC) yields a vector containing
the row and column dimensions ofmRC, while length( mRC ) returns the maximum
of these values. Here, we introduce the convention of appending R, C, or RC to the
variable name to respectively identify row vectors, column vectors, and matrices.

8 SCIENTIFIC PROGRAMMING
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Basic Manipulations: A value n is raised to the power m by n^m. The remainder
of n/m is denoted rem( n, m ) and is positive or zero for n > 0 and negative or zero
for n < 0. The function mod( n, m ) returns n modulus m, which is always positive,
while ceil( ), floor( ), and fix( ) round floating-point numbers to the next
larger integer, smaller integer, and nearest integer closer to zero, respectively.

Vector and Matrix Operations: Two vectors or matrices of the same dimension can
be added or subtracted. Multiplying a matrix or vector by a scalar, c, multiplies each
element by c. Additionally, eye( n, n ) is the n × n unit or identity matrix with ones
along the main diagonal and zeros elsewhere, while ones( n, m ) and zeros( n,
m )are n ×m matrices with all elements one or zeros so that

2+mRC=2*ones 2, 2ð Þ +mRC=
3 4
5 6

� �

and

2*eye 2, 2ð Þ +mRC=
3 2
3 6

� �

Further, mRC * mRC, or equivalently mRC^2, multiplies mRC by itself, while

mRC: * mRC=mRC:^2=
1 4
9 16

� �

implements component-by-component multiplication. Other arithmetic operations
function analogously so that the (i, j) element of M ./ N is Mij/Nij. Functions such
as cos( M ) return a matrix composed of the cosines of each element in M.

Solving Linear Equation Systems: The solution of the linear equation system
xR * mRC = yR is xR= yR / mRC, while mRC * xC = yC is solved by xC = mRC \ yC.
The inverse of a matrix mRC is represented by inv( mRC ). The eigenvalues of a
matrix are obtained through eigenValues = eig( mRC ), while both the eigenva-
lues and eigenvectors are returned through [ eigenValues, eigenVectors ] =
eig( mRC ).

Random Number Generation: A single random number between 0 and 1 is gener-
ated by rand, while rand( m, n ) returns a m × n matrix with random entries. The
same random sequence can be generated each time a program is run by including
rand( 'state', 0 ) before the first call to rand.

Control Logic and Iteration: The logical operators in octave are ==, <, <=, >, >=, ~=
(not equal) and the and, or, and not operators—&, |, and ~, respectively. Any nonzero
value is taken to represent a logical “true” value, while a zero value corresponds to
a logical “false” as can be seen by evaluating, e.g., 3 & 4, which produces the output
1. Thus,

if ( S == 2 )
xxx

elseif ( S == 3 )
yyy

9LANGUAGE FUNDAMENTALS
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else
zzz

end

executes the statements denoted by xxx if the logical statement S == 2 is true, yyy if
S == 3, and zzz otherwise. The for loop

for loop = 10 : -1 : 0;
vR(loop) = sin(loop * pi / 10 );

end;

yields the arrayvR = [sin( π)sin(9π/10)…sin( π/10)0], while 1 : 10
yields an array with elements from 1 to 10 in unit increments. Mistakenly replacing
colons by commas or semicolons results in severe and often difficult to detect errors.
If a break statement is encountered within a for loop, control is passed to the
statement immediately following the end statement. An alternative to the for loop
is the while (logical condition) … statements … end construct.

Vectorized Iterators: A vectorized iterator such as vR = sin( pi: -pi/10:
-1.e-4 ), which yields, generates, or manipulates a vector far more rapidly than the
corresponding for loop. linspace( s1, s2, n ) and logspace( s1, s2, n )
produce n equally/logarithmically spaced points from s1 to s2. An isolated colon
employed as an index iterates through the elements associated with the index
so that MRC(:, 1) = V(:); places the elements of the row or column vector V into
the first column of MRC.

Files and Function Files: A function that returns variables output1, output2
… is called [ output1, output2, … ] = myFunction( input1, input2, … )
and normally resides in a separate file myFunction.m in the current directory, the
first line of which must read function [ aOutput1, aOutput2, … ] =
myFunction( aInput1, aInput2, … ). Variables defined (created) inside a
function are inaccessible in the remainder of the program once the function terminates
(unless global statements are present), while only the argument variables and
variables local to the function are visible from within the function. A function can
accept other functions as an arguments either (for Octave functions) with the
syntax fmin( 'functionname', a, b ) or through a function handle (pointer)
as fmin( @functionname, a, b ).

Built-In Functions: Some common functions are the discrete forward and inverse
Fourier transforms, fft( ) and ifft( ) and mean( ), sum( ), min( ), max( ),
and sort( ). Data is interpolated by y1 = interp1( x, y, x1, 'method' ),
where 'method' is 'linear' (the default), 'spline', or 'cubic'; x and y are
the input x- and y-coordinate vectors; and x1 contains the x-coordinate(s) of the
point(s) at which interpolated values are desired. The function roots( [ 1 3 5 ] )
returns the roots of the polynomial x2 + 3x + 5.

Graphic Operations: plot( vY1 ) generates a simple line plot of the values in the
row or column vector vY1, while plot( vX1, vY1, vX2, vY2, … ) creates a sin-
gle plot with lines given by the multiple (x, y) data sets. Hence, plot( C, 'g.' ),
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where C is a complex vector, graphs the real against the imaginary part of C in green
with point marker style. Logarithmic graphs are plotted with semilogy( ),
semilogx( ), or loglog( ) in place of plot( ). Three-dimensional grid and
contour plots with nContours contour levels are created with mesh( mRC ) or
mesh( vX, vY, mRC ) and contour( mRC ) or contour( vX, vY, mRC,
nContours ) where vX and vY are row or column vectors that contain the x and
y positions of the grid points along the axes. The commands hold on and hold
off retain graphs so that additional curves can be overlaid. Subsequently, axis
defaults can be overridden with axis( [ xmin xmax ymin ymax ] ), while axis
labels are implemented with xlabel( 'xtext' ) and ylabel( 'ytext' ) and
the plot title is specified by title( 'title text' ). The command print
( 'outputFile.eps', '-deps' ) or, e.g., print( 'outputFile.
pdf', '-dpdf' ) yields, respectively, encapsulated postscript or .pdf files of
the current plot window in the file outputFile.dat or outputFile.pdf
(help print displays all options).

Memory Management: User-defined variable or function names hide preexisting or
built-in variable and function names, e.g., if the program defines a variable or function
length or length( ), the Octave function length( ) becomes inaccessible.
Additionally, if the second time a program is executed a smaller array is assigned
to an variable, the larger memory space will still be reserved by the variable causing
errors when, e.g., its length or magnitude is computed. Accordingly, each program
should begin with clear all to remove all preexisting assignments (a single con-
struct M is destroyed through clear M).

Structures: To associate different variables with a single entity (structure) name,
a dot is placed after the name as in

Spring1.position = 0;
Spring1.velocity = 1;
Spring1.position = Spring1.position + deltaTime * k/m *

Spring1.velocity

Variables pertaining to one entity can then be segregated from those, such as
Spring2.position, describing a different object. The names of structures are
conventionally capitalized.
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4
ELEMENTARY MATHEMATICS

The following treatment of algebra and geometry focuses on often neglected aspects.

4.1 ALGEBRA

While arithmetic concerns direct problems such as evaluating y = 2x + 5 for x = 3,
algebra addresses arithmetical inverse problems, such as the determination of x given
y = 11 above. Such generalizations of division can be highly involved depending on
the complexity of the direct equation.

4.1.1 Equation Manipulation

Since both sides of an equation evaluate to the same quantity, they can be added to,
subtracted from, or multiplied or divided by any number or expression. Therefore,

a

b
=
c

d
ð4.1.1Þ

can be simplified through cross multiplication, e.g., multiplication of both sides by
bd to yield

ad = bc ð4.1.2Þ

Fundamental Math and Physics for Scientists and Engineers, First Edition.
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Similarly, the left hand of one equation can be multiplied or divided by the left-hand
side of a second equation if the right-hand sides of the two equations are similarly
manipulated (as the right and left sides of each equation by definition represent the
same value).

Example

Equating the quotients of the right- and left-hand sides of the following two
equations

3y x + 1ð Þ= 4
4 x + 1ð Þ= 2 ð4.1.3Þ

results in 3y/4 = 2.

4.1.2 Linear Equation Systems

An algebraic equation is linear if all variables in the equation only enter to first order
(e.g., as x and y but not xy). At least N linear equations are required to uniquely deter-
mine the values of N variables. The standard procedure for solving such a system first
reduces the system to a “tridiagonal form” through repeated implementation of a small
number of basic operations.

Example

To solve,

x+ y = 3

2x + 3y= 7
ð4.1.4Þ

for x and y, the first equation can be recast as x = 3 − y, which yields a single equa-
tion for y after substitution into the second equation. Alternatively, multiplying the
first equation by two results in

2x + 2y= 6

2x + 3y= 7
ð4.1.5Þ

Subtracting the first equation from the second equation then gives

2x + 2y= 6

y = 1
ð4.1.6Þ

The inverted pyramidal form is termed an upper triangular linear equation system
and can be solved by back-substituting the solution for y from the second equation
into the first equation, which then solved for x.
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A set of equations can be redundant in that one or more equations of the set can
be generated by summing the remaining equations with appropriate coefficients. If
the number of independent equations is less or greater than N, infinitely many or
zero solutions exist, respectively. Nonlinear equation systems can sometimes be
linearized through substitution of new variables formed from nonlinear combina-
tions of the original variables. Thus, defining w = x2, z = y3 recasts

x2 + 3y3 = 4

2x2 + y3 = 3
ð4.1.7Þ

into the linear equations w + 3z = 4, 2w + z = 3.

4.1.3 Factoring

The inverse problem to polynomial multiplication is termed factoring. That is, multi-
plication and addition yield

ax+ bð Þ cx + dð Þ= acx2 + bc+ adð Þx + bd ð4.1.8Þ
which is reversed by factoring the right-hand side into the left-hand product of two lesser
degree polynomials. For quadratic (second-order) equations, the quadratic formula
states that the roots (solutions) of ax2 + bx + c = 0 are

x1,2 =
−b ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−4ac

p

2a
ð4.1.9Þ

implying that the polynomial ax2 + bx + c can be factored as (x − x1)(x − x2).
Equation (4.1.9) is derived by first completing the square according to

ax2 + bx+ c= a x2 +
bx

a

0
@

1
A+ c

= a x2 +
bx

a
+

b2

4a2

0
@

1
A−

b2

4a
+ c

= a x+
b

2a

0
@

1
A
2

−
b2−4ac

4a

ð4.1.10Þ

Multiplying N terms of the form (x − λi) yields

x−λ1ð Þ x−λ2ð Þ… x−λNð Þ = xN + xN−1
X
i

λi + x
N−2
X
i, j
i 6¼j

λiλj +…+
Y
i

λi ð4.1.11Þ
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That, e.g., the coefficient xN+1 equals the sum of the roots can aid in factoring
polynomials.

Numerous other factorization theorems exist. For example, as can be verified by
polynomial division,

a3 ± b3 = a± bð Þ a2�ab+ b2
� � ð4.1.12Þ

and in general for odd n,

an + bn = a + bð Þ an−1−an−2b + an−3b2− … + a2bn−3−abn−2 + bn−1
� � ð4.1.13Þ

A few less common formulas are

a4 + 4b4 = a2 + 2ab+ 2b2ð Þ a2−2ab+ 2b2ð Þ
a + bð Þ b+ cð Þ a + cð Þ= a2 b + cð Þ+ b2 a+ cð Þ + c2 a + bð Þ+ 2abc

− a−bð Þ b−cð Þ c−að Þ= a2 b−cð Þ+ b2 c−að Þ + c2 a−bð Þ
ð4.1.14Þ

4.1.4 Inequalities

While the same number can be added or subtracted from both sides of an inequality,
multiplication of both sides of an equation by a negative quantity, or more generally

applying a monotonically decreasing function to both sides of an inequality, reverses

the sign of the inequality.

Example

− x−4ð Þ ≥ 1 ð4.1.15Þ
which is satisfied for x < −5, can be rewritten as

x−4ð Þ ≤ −1 ð4.1.16Þ

Algebraic expressions such as (x − 2) y > 0, which implies y > 0 if x > −2 but y < 0 if
x < −2, are often negative only for certain variable values, complicating the analysis
of algebraic inequalities. Accordingly, answers should be checked by sketching the
functions entering into such inequalities.

Example

Since for x > 2 and x < 2 the function (x − 2)2 increases and decreases monotoni-
cally, respectively, for x < 2, the direction of the inequality obtained by taking the
square root of both sides of

x−2ð Þ2 > 4 ð4.1.17Þ
changes. Accordingly, the solution of Equation (4.1.17) is x > 4 or x < 0.
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4.1.5 Sum Formulas

Algebraic Series: The sum of N consecutive integers equals N times the average
value of the integers, which can be rearranged into pairs of equal value as indicated
below:

m + m + 1ð Þ+…+ m+N−1ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N integers

= m + m +N−1ð Þð Þ+ m+ 1 + m +N−2ð Þð Þ+…

=N
2m +N−1

2

0
@

1
A ð4.1.18Þ

which specializes for m = 1 to

1 + 2 + 3 +…+N =
N N + 1ð Þ

2
ð4.1.19Þ

Sum of Squares: The sum of the first N squares is computed from the formula

1 + 4 + 9 +…+N2 =
N N + 1ð Þ 2N + 1ð Þ

6
ð4.1.20Þ

Equation (4.1.20) can be derived by representing the sum of the first N squares by
S(N) so that S(N) − S(N − 1) =N2 and S(0) = 0 while additionally S(N) <N ×N2 =N3.
Hence, writing S(N) = aN3 + bN2 + cN + d with a < 1 and d = 0 from S(0) = 0,

S Nð Þ−S N−1ð Þ= a 3N2−3N + 1
� �

+ b 2N−1ð Þ + c =N2 ð4.1.21Þ

Equating the coefficients ofN2 and setting the coefficients− 3a + 2b ofN and a − b + c of
the constant term to zero yields a = 1/3, b = 1/2, c = 1/6, from which Equation (4.1.20)
follows.

Geometric Series: The sum of the first N powers of a variable is given by

1 + a+ a2 + a3 +…+ an =
1−an + 1

1−a
ð4.1.22Þ

as verified directly through long division

1−a
1 + a + a2 … + an

Þ 1 −an+ 1

1 −a
a
a −a2

. .
.

an −an + 1

0

ð4.1.23Þ
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For a < 1, this yields the infinite series

1 + a + a2 + a3 +…=
1

1−a
ð4.1.24Þ

4.1.6 Binomial Theorem

The nth power of a sum of two variables can be written according to the binomial
theorem as

a + bð Þn = nCna
nb0 + nCn−1a

n−1b1 +…+ nC0a
0bn ð4.1.25Þ

The binomial coefficients are given in terms of the factorial function n ! ≡ n(n − 1)
(n − 2)… 1 by

nCk =
n!

k! n−kð Þ! =
n n−1ð Þ… n−k + 1ð Þ

k!
ð4.1.26Þ

so that

nC0 = nCn = 1

nC1 = nCn−1 =
n!

1! n−1ð Þ! =
n

1!

nC2 = nCn−2 =
n!

2! n−2ð Þ! =
n n−1ð Þ

2!

ð4.1.27Þ

For noninteger powers, n = α, the series does not terminate and is therefore termed
transcendental. For a > b, the binomial theorem then yields with δ = b/a

a+ bð Þα = aα 1 + δð Þα = aα 1 + αδ +
α α−1ð Þ

2!
δ2 +

α α−1ð Þ α−2ð Þ
3!

δ3 + � � �
� �

ð4.1.28Þ

Accordingly, for δ� 1,

1 + δð Þα≈1 + αδ +… ð4.1.29Þ
while

1
1 + δð Þα = 1+ δð Þ−α≈1−αδ +… ð4.1.30Þ

4.2 GEOMETRY

Several fundamental results in geometry recur often in physics calculations and
should be memorized. Theorems that are trivially derived through vector analysis
are discussed in later chapters.
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4.2.1 Angles

The angle between two intersecting rays can be obtained from a circle with vertex at
the point of intersection by dividing the (arc)length, s, of the part of the circle included
by the rays by its radius, r,

θ =
s

r
ð4.2.1Þ

θ is here expressed in radians. Since a full circle thus corresponds to 2π radians,

θdegrees =
180
π

θradians ð4.2.2Þ

If two lines intersect, the angles on either side of one of the two intersecting lines must
sum to 180�. For a line intersecting two parallel lines, corresponding angles (angles in
Fig. 4.1 distinguished by an identical number of markers) are equal.

4.2.2 Triangles

The equality of corresponding angles together implies from Figure 4.2 that the
interior angles of a triangle sum to 180�. A trivial modification of Figure 4.2 further
demonstrates that if a side of a triangle is extended beyond a vertex, the exterior
angle between this line and the adjacent side equals the sum of the opposing two
angles.

Two congruent (identical) triangles either have the lengths of all sides equal (SSS)
or have two sides and their included angle (SAS) or one side and the two adjacent

θ

θ

180–θ

180–θ

FIGURE 4.1 Corresponding angles.
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angles (ASA) identical, as is evident from a drawing. If all three angles are identical in
the two triangles (AAA), the ratios of the lengths of corresponding sides in the two
similar triangles are instead identical.

The bisectors of the angles in any triangle intersect at the incenter, around which a
circle can be drawn that contacts the three sides of the triangle. Lines extending from
each vertex to the midpoint of the opposite side instead intersect at the centroid, which
is twice as close to the midpoint of each side as it is to the opposite vertex. Finally,
lines perpendicular to and passing through the midpoints of each of the triangle’s sides
intersect at the circumcenter situated the same distance from the three vertices.

4.2.3 Right Triangles

Triangles with three equal sides (and therefore angles) are termed equilateral, and
those with two equal sides (angles), isosceles; if all angles are less than 90�, they
are termed acute; if one angle is greater than 90�, obtuse; and if one angle equals
90�, right. For right triangles, Pythagoras’s theorem, which states that the square of
the length of the longest side of the triangle equals the sum of the squares of the
lengths of the two smaller sides, i.e., c2 = a2 + b2, in Figure 4.3 holds.

In Figure 4.3, the cosine, cos θ, is defined as the ratio of the adjacent leg to the hypo-
tenuse, a/c, while the sine, sin θ, equals the ratio of the opposite leg to the hypotenuse,

FIGURE 4.2 Proof that the angles of a triangle sum to 180�.

b

a

c

θ

FIGURE 4.3 Right angle triangle.
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b/c, and the tangent, tan θ, is formed from the ratio of these quantities or b/a. The reci-
procals (the reciprocal of any quantity a is defined as 1/a) of sin, cos, and tan are
denoted, somewhat counterintuitively, csc (cosecant), sec (secant), and cot (cotangent),
e.g., cot y = 1/tan y, sec y = 1/cos y, and csc y = 1/sin y.

The formula c2 = a2 + b2 possesses integer solutions for certain values of a, b, and c.
The smallest of these appear frequently in multiple choice problems and should be
memorized, namely,

3,4,5ð Þ 5,12,13ð Þ 8,15,17ð Þ 7,24,25ð Þ ð4.2.3Þ

The acute angles of a (3,4,5) triangle are approximately 38.7� and 53.1�. Other
frequently occurring triangles are the isosceles 45�−45�−90� triangle with lengths

a = ξ,b = ξ,c= ξ
ffiffiffi
2

p
in Figure 4.3 yielding

sin θ = sin 45� = cos 45� =
1ffiffiffi
2

p =

ffiffiffi
2

p

2
, tan 45� = 1 ð4.2.4Þ

and the 30�−60�−90� triangle with lengths a = ξ,b =
ffiffiffi
3

p
ξ,c = 2ξ so that

sin θ = sin 30� =
1
2
, cos 30� =

ffiffiffi
3

p

2
, tan 30� =

1ffiffiffi
3

p =

ffiffiffi
3

p

3
ð4.2.5Þ

4.2.4 Polygons

An n-sided polygon can be subdivided into n triangles sharing a common vertex
within the polygon, each of which has a single side coincident with a facet of the
polygon. Since the angles of each triangle sum to 180�, while combining the angles
at the shared vertex gives 360�, summing all the internal angles of the polygon yields
180�n − 360� = 180�(n − 2).

4.2.5 Circles

Considering finally the angles created when lines intersect a circle, the angle between
a tangent to a circle and a chord (a line that intersects the circle at two points) passing
through the point of tangency equals half the central angle between the rays drawn
from the center of the circle to the two points of intersection of the chord. If two lines
pass through the two points of intersection of a chord to any other point on the
circumference of the circle, the inscribed angle between these two lines equals half
the central angle formed by the chord. Finally, the angle between two chords that
intersect inside or outside a circle is half the sum or half the difference of the angles
formed by the two arcs that these lines intercept, respectively.
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4.3 EXPONENTIAL, LOGARITHMIC FUNCTIONS,
AND TRIGONOMETRY

The study of right angle triangles is termed trigonometry. As the trigonometric func-
tions are directly related to complex exponential functions, lengthy geometric analysis
can be replaced by compact algebraic derivations.

4.3.1 Exponential Functions

The exponential function is defined through a limiting procedure. Placing $100 in a
bank at 10% interest compounded annually yields $110 after 1 year, while interest
compounded biannually results in $105 after half a year, and $105(1 + 0.1/2) =
$110.25 > $110 after 1 year. For interest compounded n times a year, the amount
received after 1 year equals the following nth order polynomial in 0.1/n:

$100 1 +
0:1
n

� �n
ð4.3.1Þ

Hence, if the interest is compounded continuously (an infinite number of times per
year), the amount is

$100e0:1≡ lim
n!∞

$100 1 +
0:1
n

� �n
ð4.3.2Þ

From the binomial theorem,

eα = lim
n!∞

1 +
α

n

� �n

= lim
n!∞

1 +
n

1!
α

n
+
n n−1ð Þ

2!
α

n

� �2
+ � � �

0
@

1
A

≈ lim
n!∞

1 +
n

1!
α

n
+
n2

2!
α

n

� �2
+ � � �

0
@

1
A

= 1 +
α

1!
+
α2

2!
+ � � �

ð4.3.3Þ

Functions such as the exponential that are represented by infinite polynomial series
are termed transcendental.

4.3.2 Inverse Functions and Logarithms

An inverse function, f −1(x), is defined such that if y = f(x), x = f −1(y); e.g., the inverse
of the square function is the square root function. Graphically, the inverse function is
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constructed by reflecting y = f(x) through the line x = y since exchanging x and y in
y = f(x) yields x = f(y), which is equivalent to y = f −1(x).

The natural logarithm (often simply termed logarithm) provides the inverse of the
exponential function such that if exp(a) = b, a = ln(exp(a)) = ln(b). The properties of
the logarithms follow from the laws of exponents:

xaxb = x �x �… �xð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
a times

x �x �… �xð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
b times

= xa+ b

xað Þb = xab
ð4.3.4Þ

Consequently, if exp (ln x) = x and exp (ln y) = y, xy = exp (ln x) exp (ln y) = exp (ln x +
ln y). Taking the natural logarithm of both sides,

ln xyð Þ = lnx+ lny ð4.3.5Þ

which further implies that

lnxn = n lnx ð4.3.6Þ

The logarithm to the base b is defined such that x = logby if b
x = y. If the base b is

omitted, its implicit value is 10. A logarithm to a base a can be expressed in terms of a
logarithm to a different base b by noting that if bx = y, then x = logbywhile additionally
loga(b

x) = x logab = logay, and hence,

logby =
logay
logab

ð4.3.7Þ

For any b, logb(1) = 0 while logb(x) approaches ∞ more slowly than any positive

power of x (i.e., limx!∞ logb xð Þ=xn½ � = 0 for n > 0) as x!∞ and more slowly than

any power of x− n as x! 0.

4.3.3 Hyperbolic Functions

A general function, f(x), can be written as the sum of an even function obeying g(x) =
g(−x) and an odd function with h(x) = −h(−x) according to

f xð Þ = f xð Þ+ f −xð Þ
2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
even

+
f xð Þ− f −xð Þ

2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
odd

ð4.3.8Þ
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For the exponential function, the even and odd functions are termed the hyperbolic
cosine and sine, cosh(x) and sinh(x), respectively. That is,

ex =
ex + e−x

2|fflfflfflffl{zfflfflfflffl}
cosh x

+
ex−e−x

2|fflfflfflffl{zfflfflfflffl}
sinh x

= 1 +
x2

2!
+
x4

4!
+ � � �

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cosh x

+
x

1!
+
x3

3!
+ � � �

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

sinh x

ð4.3.9Þ

from which

e−x = cosh −xð Þ+ sinh −xð Þ = cosh x− sinh x

1 = exe−x = cosh x+ sinh xð Þ cosh x− sinh xð Þ= cosh2x− sinh2x
ð4.3.10Þ

The hyperbolic sine, cosine, and tangent tanh(x) = sinh x/cosh x are graphed in
Figure 4.4. The reciprocals of these functions are, respectively, termed cosech
(or csch), sech, and cotanh (or coth)

4.3.4 Complex Numbers and Harmonic Functions

If the two solutions of x2 + 1 = 0 are represented by ± i, where i with i2 = −1 is the
“imaginary” unit, the fundamental theorem of algebra states that a polynomial
(with possibly complex coefficients) of nth degree possesses n real or complex roots,

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
sinh
cosh
tanh

FIGURE 4.4 Hyperbolic functions.

23EXPONENTIAL, LOGARITHMIC FUNCTIONS, AND TRIGONOMETRY

www.Technicalbookspdf.com



where m identical roots are counted as m separate values. A complex number is
represented as z = a + ib with a conjugate and modulus defined by z∗ = a − ib and

zj j≡ ffiffiffiffiffiffi
zz∗

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p
. Further, z can be described by a point in the complex

plane in which b is plotted on the vertical axis and a on the horizontal axis. The
distance from the origin to z equals the modulus, |z|. Summing two complex numbers
a1 + ib1 and a2 + ib2 yields a1 + a2 + i(b1 + b2), which corresponds graphically to
the concatenation of the two vectors or arrows from the origin to the locations of
these numbers. Important properties of complex numbers are, where the last line,
termed rationalization, is obtained by multiplying both numerator and denominator
by a − ib,

z1 = a+ ib= z2 = c+ id implies a= c,b = d

a + ibð Þ c + idð Þ= ac−bd + i ad + bcð Þ
1

a + ib
=

a− ib

a2 + b2

ð4.3.11Þ

Replacing x in exp (x) by iy leads to the even and odd harmonic functions

eiy = cosh iy+ sinh iy=
eiy + e− iy

2|fflfflfflfflffl{zfflfflfflfflffl}
cosy

+ i
eiy−e− iy

2i|fflfflfflfflffl{zfflfflfflfflffl}
siny

= 1−
y2

2!
+ � � �

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

cosy

+ i y−
y3

3!
+ � � �

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

siny

ð4.3.12Þ

which implies

cosh ixð Þ= cos x

sinh ixð Þ= isin x
ð4.3.13Þ

Thus, i acts analogously to the minus sign in sinh(−y) = −sinh y, cosh(−y) = cosh y.
Figure 4.5 for the sine, cosine, and tangent should be memorized.

As in Equation (4.3.10),

e− ix = cos −xð Þ + isin −xð Þ = cos x− isin x

1 = eixe− ix = cos x + isin xð Þ cos x− isin xð Þ = cos2x + sin2x
ð4.3.14Þ

which can also be derived directly from Equations (4.3.10) and (4.3.13):

cos2y+ sin2y = cosh2 iyð Þ+ − isinh iyð Þð Þ2 = cosh2 iyð Þ− sinh2 iyð Þ= 1 ð4.3.15Þ
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4.3.5 Inverse Harmonic and Hyperbolic Functions

The inverse trigonometric functions, denoted, e.g., for y = sin x by x = sin− 1(y) or
equivalently x = arcsin(y), are multivalued since all harmonic functions are
periodic in x. A single-valued inverse function is constructed by restricting x
to its principal part, which is the region closest to the origin (− π < y < π for
y = arcsin(x) and y = arccos(x), and − π/2 < y < π/2 for y = arctan(x) and y = arccot
(x)). An expression such as sin(tan− 1(b/a)) can be evaluated graphically since
the argument of the sine function is the angle, θ whose tangent is b/a.

Hence, sin θ = b=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p
from Figure 4.6. Again, from this figure, a complex

number z = a + ib equals
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p
times a unit magnitude complex number cos θ +

i sin θ = exp (iθ) (as jexp (iθ)j = (exp (−iθ)exp (iθ))1/2 = 1) with tan θ = b/a or θ =
arctan (b/a).

The inverse hyperbolic and harmonic functions can be expressed in terms of loga-
rithms. For example, y = cosh− 1(x) implies exp (y) + exp (−y) = 2x. Writing exp (y) =

k, exp(−y) = 1/k yields k2 − 2kx + 1 = 0 from which y = ln kð Þ = ln 1 +
ffiffiffiffiffiffiffiffiffiffiffi
x2−1

p� 	
after

applying the quadratic formula (for cos− 1(x), y is replaced by iy). Similarly,

sinh−1 xð Þ= ln 1 +
ffiffiffiffiffiffiffiffiffiffiffi
x2 + 1

p� 	
, while tanh− 1(x) = (1/2)log

�
(1 + x)/(1 − x)

�
.
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FIGURE 4.5 Harmonic functions.
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4.3.6 Trigonometric Identities

The trigonometric (and hyperbolic) functions are elementary combinations of only
two exponential functions and are therefore related by numerous identities. The fol-
lowing should be memorized together with their derivations.

• Since 90 − θ is the opposite angle to θ in a right angle triangle, from the definition
of sine and cosine functions, sin(90 − θ) = cos θ. Such identities can also be

obtained from graphs of the trigonometric functions. Viewing the sine function

graph in the − θ direction starting from θ = 90� yields the curve for the cosine func-
tion. Alternatively, from Equation (4.3.19) below, sin(90 − θ) = sin 90 cos θ −
cos 90 sin θ with sin 90 = 1, cos 90 = 0.

• Dividing both sides of sin2a + cos2a = 1 by cos2a or sin2a yields, respectively,

tan2a + 1 = sec2a

1 + cot2a = csc2a
ð4.3.16Þ

• The “sum formulas” are derived as follows:

ei a + bð Þ = eiaeib

cos a+ bð Þ + isin a+ bð Þ = cos a + isin að Þ cos b+ isin bð Þ
= cos acos b− sin asin b + i sin acos b + cos asin bð Þ

ð4.3.17Þ

x

iy

b

a

z = a + ib

(a2 + b2)½

θ

FIGURE 4.6 Geometric interpretation of a complex number.
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Equating real and imaginary parts yields

sin a + bð Þ = sin acos b + cos asin b

cos a + bð Þ= cos acos b− sin asin b
ð4.3.18Þ

As well, if − b is substituted for b

sin a−bð Þ= sin acos b− cos asin b

cos a−bð Þ = cos acos b+ sin asin b
ð4.3.19Þ

These can be remembered from themnemonic “the signs gowith the sines,” i.e., a +
sign appears in the formula for sin(a + b), while a − sign is present in cos(a + b).

• Some important consequences of the sum and difference formulas are

sin acos b =
1
2

sin a+ bð Þ + sin a−bð Þð Þ ð4.3.20Þ

cos acos b=
1
2

cos a + bð Þ+ cos a−bð Þð Þ ð4.3.21Þ

sin 2a = sin a + að Þ = 2sin acos a ð4.3.22Þ

cos 2að Þ = cos a + að Þ= cos2a− sin2a = 2cos2a−1 = 1−2sin2a ð4.3.23Þ

tan a+ bð Þ = sin a + bð Þ
cos a + bð Þ

=
sin acos b+ cos asin bð Þ= cos acos bð Þ
cos acos b− sin asin bð Þ= cos acos bð Þ

=
tan a + tan b
1− tan a tan b

ð4.3.24Þ

Substituting a = b/2 in Equation (4.3.23),

cos b= 1−2sin2
b

2

� �
= 2cos2

b

2

� �
−1 ð4.3.25Þ

which leads to the half-angle formulas

sin
b

2

 !
= ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− cos b

2

r

cos
b

2

 !
= ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + cos b

2

r ð4.3.26Þ
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Here the minus sign before cos b is associated with sin(b/2) (the signs (sides)
switch at half time).

4.4 ANALYTIC GEOMETRY

Geometrical constructs can be represented by algebraic expressions and subsequently
manipulated algebraically. Linear and quadratic equations then represent lines or
planes and conic sections, respectively. The latter possess numerous but infrequently
employed properties omitted in the discussion below.

4.4.1 Lines and Planes

A line in the (x, y) plane is represented by a linear equation

ax+ by= c ð4.4.1Þ

The point of intersection of two nonparallel lines corresponds to the (x, y) value that
solves the system of the two linear equations describing the lines. A line intercepts the
x-axis at the x-intercept c/a obtained by setting y = 0 in Equation (4.4.1), while insert-
ing x = 0 yields the y-intercept c/b. The slope, m, of the line is defined as the ratio of
the difference in y values to the difference in x values for any two points, (x1, y1) and
(x2, y2), along the line

m=
Δy
Δx

=
y2−y1
x2−x1

=
1
b =c−ax2
� �

− 1
b =c−ax1
� �

x2−x1
= −

a

b
ð4.4.2Þ

A line in two dimensions can be specified by its slope, m, and y-intercept, y0, as

y =mx+ y0 ð4.4.3Þ

or from the slope and a single point, (x1, y1), on the line according to

m=
y−y1
x−x1

ð4.4.4Þ

or, finally, by any two distinct points from

y−y1 =m x−x1ð Þ = y2−y1
x2−x1

� �
x−x1ð Þ ð4.4.5Þ

To determine the equation of a line that passes through a point (x1, y1) perpendicular
to a second line with slopem, note that a 90� rotation transforms x and y into y and − x,
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respectively. The slope is thus altered from Δy/Δx =m to −Δx/Δy = −1/m, yielding
from Equation (4.4.4)

y−y1 = −
1
m

x−x1ð Þ ð4.4.6Þ

Lines and planes in three and higher dimensions are most conveniently analyzed with
vectors as described in the following chapter. Often, a line is specified parametrically
by the values of a point (x0, y0, z0) and the direction cosines, which are the cosines of
the angles, γi, that the line makes with each of the coordinate axes, as

x λð Þ = x0 + λcos γx
y λð Þ = y0 + λcos γy
z λð Þ = z0 + λcos γz

ð4.4.7Þ

where the parameter λ ranges over all real values. A plane is represented as

ax+ by+ cz = d ð4.4.8Þ

Two nonparallel planes intersect along a line, while three nonparallel planes that do
not share a line of intersection intersect at a point given by the solution of the corre-
sponding system of three equations.

4.4.2 Conic Sections

Quadratic algebraic equations describe the curves obtained from the intersection of a
cone with a plane. All points a distance R from (x1, y1) form a circle

x−x1ð Þ2 + y−y1ð Þ2 =R2 ð4.4.9Þ

A common error is to omit the minus sign in this and similar contexts.
For a parabola, the difference between the distance from a point, termed the focus,

to any point,(x, y), on the parabola and the perpendicular distance from the latter point

to a line termed the principal axis remains constant. To illustrate, a focus at (0, a) and a
principle axis described by y = −a result in the equation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y−að Þ2

q
− y+ að Þ = 0

x2 + y−að Þ2 = y+ að Þ2

x2 = 4ya

y=
x2

4a

ð4.4.10Þ
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A parabola that opens upward (or downward for negative values of c) possesses
the form

y−y1ð Þ= c x−x1ð Þ2 ð4.4.11Þ

while a parabola that opens to the right or left has the form

x−x1ð Þ= c y−y1ð Þ2 ð4.4.12Þ

An ellipse is characterized by two focal points or foci, such that the sum of the

distances from any point of the ellipse to both foci is a constant. For example,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−að Þ2 + y2

q
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x + að Þ2 + y2

q
= 2R ð4.4.13Þ

which reduces to the equation of a circle when the distance, 2a, between the two foci
approaches zero. After squaring twice, the above equation can be rewritten as

x2

R2
+

y2

R2−a2ð Þ = 1 ð4.4.14Þ

An ellipse centered at the point (x1, y1) can be described by an equation of the form
(possibly after rotating the coordinate axes to coincide with those of the ellipse)

x−x1ð Þ2
α2

+
y−y1ð Þ2
β2

= 1 ð4.4.15Þ

The quantities 2α and 2β are the diameters of the ellipse measured along the x- and
y-directions, respectively. The axes corresponding to the longer and smaller of these
are termed the major and minor axis, respectively.

Finally, the hyperbola

x−x1ð Þ2
α2

−
y−y1ð Þ2
β2

= 1 ð4.4.16Þ

is formed from the loci (collection) of points with identical differences of their
distances from two foci. As the above equation can be solved for any value of x,
the hyperbola opens to the right and left, while if the signs of the two terms on the
left-hand side of Equation (4.4.16) are reversed, the hyperbola instead opens upward
and downward. Rotating by 90� around (x1, y1) with the methods of the following
section yields for α = β a curve that opens in the first and third quadrants, namely,

x−x1ð Þ y−y1ð Þ= c2 ð4.4.17Þ
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4.4.3 Areas, Volumes, and Solid Angles

While the evaluation of areas and volumes generally requires integration, essential
formulas include:

• Square and parallelogram: Area = base × height

• Triangle: Area = ½ base × height

• Trapezoid (of any shape, including parallelograms): Area = ½ (lower base +
upper base) height

• Circle: Area = π × (radius)2; circumference = 2π × radius = π × diameter

• Cube, parallelepiped, and cylinder: Volume = area of base × height

• Pyramid and cone: Volume = (1/3) × area of base × height

• Sphere: Volume = (4π/3) × (radius)3; surface area = 4π × (radius)2

Failure to distinguish between radius and diameter frequently leads to errors.
Just as an angle in radians in two dimensions is defined by the formula θ = s/R, where

s is the arclength of the segment of a circle of radius, R, centered at the angle’s vertex
subtended by θ, a three-dimensional solid angle Ω = A/R in steradians corresponds to
the area, A, of the surface of a sphere of radius, R, centered at the vertex that the solid
angle subtends. The entire sphere is therefore subtended by a solid angle of 4π.
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5
VECTORS AND MATRICES

Linear equation systems are conveniently described with rectangular arrays of
numeric values termed matrices. As algebraic operations on matrices act on groups
of elements, their properties are restricted compared to manipulations of single values.

5.1 MATRICES AND MATRIX PRODUCTS

Denoting the element in the ith row and jth column of two matrices A and B by aij
and bij, the corresponding element of C =A ±B equals aij ± bij. The (inner) product
of twomatrices,AB, is defined only if the column dimension ofA equals the row dimen-
sionofB.Multiplying aN × PmatrixAwithN rowsandP columnswithaP ×MmatrixB
results in a N ×M matrix C with

cij =
Xp
l= 1

ailblj ≡ ailblj ð5.1.1Þ

where the Einstein notation in which repeated indices are implicitly summed over has
been introduced. That is, to obtain cij, each element in the ith row of the matrix A is
multiplied by the corresponding element in the jth column ofB, and these products are
then summed.

Matrix multiplication is associative, i.e.,

A BCð Þ= ABð ÞC ð5.1.2Þ
Fundamental Math and Physics for Scientists and Engineers, First Edition.
David Yevick and Hannah Yevick.
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but not commutative, i.e., AB 6¼BA (for square matrices A and B). The difference
between these two quantities, termed the commutator, quantifies the degree of
noncommutativity and is denoted by

A,B½ �= − B,A½ �≡AB−BA ð5.1.3Þ
Two identities satisfied by the commutator are

AB,C½ �=ABC−CAB =A B,C½ � + A,C½ �B ð5.1.4Þ

and the Jacobi identity

A,B½ �,C� �
+ C,A½ �,B� �

+ B,C½ �,A� �
= 0 ð5.1.5Þ

which is proven by summing all 12 terms (the last two sets of four terms can be
obtained from the first set through a cyclic permutation of the three matrices according
to A! B!C!A).

TheN ×N identity matrix Iwith elements δij, where theKronecker delta function is
defined by

δij =
1 i= j
0 i 6¼ j

�
ð5.1.6Þ

possesses the property

AI= IA ð5.1.7Þ
for any N × N matrix A. The inverse of A, A− 1, when it exists, is the N × N matrix
defined by

AA−1 =A−1A = I ð5.1.8Þ
Here,

ABð Þ−1 =B−1A−1 ð5.1.9Þ

as is verified by right or left multiplying by AB. Methods for inverting matrices
are presented in subsequent sections.

The transpose, AT, of A reflects A about its main diagonal yielding elements
aTij = aji. Since ABð ÞT� �

ij
= ajkbki = aTkjb

T
ik = b

T
ika

T
kj,

ABð ÞT =BTAT ð5.1.10Þ

A symmetric matrix satisfies A =AT
, while for a skew-symmetric matrix, A = −AT.

A matrix A is decomposed into a sum of symmetric and skew-symmetric parts by

A=
A+AT

2|fflfflffl{zfflfflffl}
symmetric

+
A−AT

2|fflfflffl{zfflfflffl}
skew symmetric

ð5.1.11Þ
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TheHermitian conjugate (also called the Hermitian transpose, conjugate transpose, or
adjoint),A†, ofA is generated by a complex conjugating each element of the transpose

matrix; i.e., a†ij = a
∗
ji . As a result of the transposition,

ABð Þ† =B†A† ð5.1.12Þ

A Hermitian matrix satisfies A =A†, while for an anti-Hermitian matrix, A = −A†.
A matrix is separated into Hermitian and anti-Hermitian parts according to

A=
A+A†

2|fflffl{zfflffl}
Hermitian

+
A−A†

2|fflffl{zfflffl}
anti-Hermitian

ð5.1.13Þ

5.2 EQUATION SYSTEMS

A general linear system of equations can be expressed as a matrix equation of the form
Ax = b with

a11 … a1n
..
. . .

. ..
.

am1 � � � amn

0
B@

1
CA

x1
..
.

xn

0
B@

1
CA=

b1
..
.

bn

0
B@

1
CA ð5.2.1Þ

The solution x in Equation (5.2.1) can be obtained by repeating the elementary
operations described in association with Equation (4.1.4) on the augmented
coefficient matrix

a11 … a1n
..
. . .

. ..
.

am1 � � � amn

b1n
..
.

bmn

�������

0
B@

1
CA ð5.2.2Þ

until the matrix A to the left of the vertical line is transformed into the identity matrix.
That is, if Equation (4.1.4) is written as

2 3

1 1

7

3

����
� �

ð5.2.3Þ

multiplying the lower equation again by two yields

2 3

2 2

7

6

����
� �

ð5.2.4Þ

After further elementary operations, x1 = 2, x2 = 1 is obtained from the reduced
augmented matrix

1 0

0 1

2

1

����
� �

ð5.2.5Þ
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The equation system Equation (5.2.1) can possess zero solutions as in 3x1 = 0,
x1 = 4, a unique solution, or an infinite number of solutions as in x1 + x2 = 6,
2x1 + 2x2 = 12. The row space, described by all linear combinations of the rows of
A, remains invariant with respect to the elementary operations. Hence, the row space
for the matrix on the left of the vertical line in Equation (5.2.3) or equivalently
Equation (5.2.5) comprises the entire two-dimensional plane, while for Ax = b with

A=
1 1

2 2

� �
b=

6

12

� �
ð5.2.6Þ

the row space consists of all vectors (c, c)T = c1(1, 1)
T + c2(2, 2)

T that represents a line
through the origin. The dimension of the row space is termed the rank of the matrix
and equals the number of nonzero rows to the left of the vertical line in the reduced
augmented matrix. The kernel or null space is formed from the set of all vectors x
satisfying Ax = 0, which consists of the point x1 = x2 = 0 of dimension zero in
Equation (5.2.3) and the one-dimensional line x1 + x2 = 0, perpendicular to the line
defining the row space, in Equation (5.2.6). In general, the dimension of the null
space, or nullity, equals the number of columns of A minus its rank. This is termed
the span or space of solutions to the equation system as any solution in the null
space can be added to a solution of the original linear equation system to yield a
new solution. As an example, the difference between the two solutions (6, 0)T and
(3, 3)T of Ax = b with A and b given by Equation (5.2.6) yields the vector
(3, − 3)T. This point satisfies x1 + x2 = 0 and therefore belongs to the null space of A.

5.3 TRACES AND DETERMINANTS

The trace (also written as Sp( )) of a matrix is defined as the sum of its diagonal
elements:

Tr Að Þ =
X
i

aii = aii ð5.3.1Þ

The trace possesses the following properties:

Tr A+Bð Þ=Tr B+Að Þ

Tr AT
	 


=Tr Að Þ

Tr cAð Þ= cTr Að Þ
Tr ABð Þ=Tr BAð Þ

ð5.3.2Þ

the last of which implies that

Tr ABCð Þ =Tr CABð Þ =Tr BCAð Þ ð5.3.3Þ
but not Tr(ABC) = Tr(BAC) since B and A do not commute.
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The determinant det(A) or jAj of a necessarily square matrix is given in Einstein
notation by

det Að Þ= εijkl…a1ia2ja3ka4l… ð5.3.4Þ

where the completely asymmetric Levi-Civita symbol εijkl… satisfies

ε1234… = 1
εijkl… = −εjikl…
εiikl… = 0

ð5.3.5Þ

The last two relationships apply for any pair of indices. The determinant of a N × N
matrix contains N! terms complicating its evaluation for N > 3. Only for N = 2, 3 can
the determinants be simply obtained by subtracting the products of the terms along the
left diagonals from those along the right diagonals, where columns are duplicated
outside the matrix as required. That is,

a11 a12
a21 a22

����
���� = a11a22−a12a21

a11 a12 a13
a21 a22 a23

a31 a32 a33

�������

�������
a11 a12
a21 a22

a31 a32

=
a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31−a11a23a32−a12a21a33
ð5.3.6Þ

From Equation (5.3.4),

det AT
	 


= det Að Þ ð5.3.7Þ

Although det(A +B) 6¼ det(A) + det(B),

det ABð Þ = det Að Þdet Bð Þ ð5.3.8Þ

Equation (5.3.8) follows from the invariance of the determinant under each of the
elementary operations employed in, e.g., Equation (5.2.3) to transform the left-hand
matrix into a unit matrix. That is, exchanging two rows or two columns of a matrix
reverses the sign of the determinant, as evident either fromEquation (5.3.4) or bynoting
that, e.g., the rows of a 2 × 2 matrix can be interchanged by left multiplying by

T1 =
0 1

1 0

� �
ð5.3.9Þ

with determinant −1, consistent with Equation (5.3.8). Similarly, multiplying a row by
a constant, k, increases the determinant by this factor as is evident for the second row
by left multiplying with

T2 =
1 0

0 k

� �
ð5.3.10Þ
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for which det(T2) = k. Finally, left multiplying by

T3 =
1 k

0 1

� �
ð5.3.11Þ

with det(T3) = 1 corresponds to the elementary operation that adds a multiple k of the
second row to the first row. From the discussion surrounding Equation (4.1.4), any
invertible matrix A can be transformed into a unit matrix according to

I =Tζ…TβTαA ð5.3.12Þ

where α, β,…, ζ equal 1, 2, or 3 and det(Tζ…Tβ Tα) = 1/det(A). Since det I = 1,

det ABð Þ= det T−1
α T−1

β …T−1
ζ IB

� �

= det T−1
α

	 

det T−1

β

� �
…det T−1

ζ

� �
det IBð Þ

= det Að Þdet Bð Þ

ð5.3.13Þ

Additionally, AA−1 = I implies

detA−1 =
1

detA
ð5.3.14Þ

and hence, A−1 exists only if det(A) 6¼ 0.
Elementary operations can be applied to transform the determinant of a matrix A

into an equivalent jBj for which most elements bij = 0. This enables an efficient
expansion

det Bð Þ=
X
j

bijCij

|fflfflfflfflffl{zfflfflfflfflffl}
for any row i

=
X
i

bijCij

|fflfflfflfflffl{zfflfflfflfflffl}
for any column j

ð5.3.15Þ

in terms of cofactors Cij, defined as (−1)
i + j times the determinant formed by eliminat-

ing row i and column j from jBj. Cramer’s rule additionally expresses the solution of
the linear system, Equation (5.2.1), as

x1 =

b1 a12 � � � an1
..
. ..

. . .
. ..

.

bn an2 � � � ann

�������

�������
det Að Þ , x2 =

a11 b1 � � � an1
..
. ..

. . .
. ..

.

an1 bn � � � ann

�������

�������
det Að Þ , xn =

a11 � � � a1n−1 b1
..
. . .

. ..
. ..

.

an1 � � � ann−1 bn

�������

�������
det Að Þ ð5.3.16Þ
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The inverse of a matrix A is given in terms of the transpose of the matrix of its
cofactors by

A−1
	 


ij
=

1
det Að ÞC

T
ij =

1
det Að ÞCji ð5.3.17Þ

The origin of this formula can be understood by noting that Cramer’s rule with, e.g.,
b = (1, 0,…, 0)T yields the first column in the matrix A− 1.

Example

1 2

3 4

� �−1
=

1
−2

4 −2

−3 1

� �
=

−2 1

1:5 −0:5

� �
ð5.3.18Þ

5.4 VECTORS AND INNER PRODUCTS

A vector possesses both a scalar (numeric) magnitude that is independent of the

coordinate system and a direction that is described differently in different coordinate

systems. For example, the displacement vector can be represented by an arrow

directed from the initial to the final spatial position where the magnitude of the

displacement, the scalar distance, equals the length of the arrow. Similarly, the

velocity vector specifies the rate of change of the displacement per unit time, while

the speed refers to its scalar magnitude. A vector A
!
in three dimensions is generally

specified by a three-component row or column array with magnitude (length)

A ≡ A
!��� ���= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2x + a
2
y + a

2
z

q
ð5.4.1Þ

The unit vector in the direction A
!
is then

â= êa ≡
A
!

A
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x + a

2
y + a

2
z

q ax, ay, az
	 
 ð5.4.2Þ

The sum and difference of two vectors A
!
= ax, ay, az
	 


and B
!
= bx, by, bz
	 


are
given by

A
!
± B

!
= ax ± bx,ay ± by,az ± bz
	 
 ð5.4.3Þ

Graphically, A
!
+ B

!
corresponds to displacing A

!
or B

!
so that its tail is located at the

head of the other vector; the sum then extends from the tail of the first vector to

the head of the second as in Figure 5.1.

Since the negative of a vector is formed by reversing its direction, A
!
− B

!
is represented

by the sum of A
!
and B

!
after the direction of the arrow of B

!
is reversed. Two vectors of
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the same dimension can be multiplied in three ways to yield either a scalar, a (pseudo)
vector, or a matrix (tensor). These are termed the dot or scalar inner product, the
cross product, and the tensor, outer, or Helmholtz product, respectively. The dot
product multiplies corresponding components of the two vectors so that in three
dimensions

A
! �B! ≡ ax, ay, az

	 
 bx
by
bz

0
@

1
A= axbx + ayby + azbz ≡ aibi ð5.4.4Þ

If the x-axis of a rectangular coordinate system coincides with the direction of A
!
,

Equation (5.4.4) reduces to axbx = A
!��� ���bx, the magnitude of A

!
multiplied by the projec-

tion of the vector B
!
onto A

!
. Since the dot product represents a scalar that is not altered

by rotations or translations of the coordinate axes, denoting the angle between the

vectors A
!
and B

!
by θAB,

A
! �B! = Aj j Bj jcosθAB ð5.4.5Þ

while the square of the difference of two vectors equals

A
!
− B

!� �2
≡ A

!
− B

!� �
� A

!
− B

!� �
=A2 +B2−2A

! �B! =A2 +B2−2ABcosθAB ð5.4.6Þ

As C
!
= A

!
− B

!
is the third side of the triangle formed by A

!
and B

!
, Equation (5.4.6)

yields the law of cosines

cosθAB =
A2 +B2−C2

2AB
ð5.4.7Þ

A plane perpendicular to the x-axis and passing through the point (x, y, z) = (a, 0, 0)
is described by

x = êx� r! = a ð5.4.8Þ

A

B

C = A+B

FIGURE 5.1 Addition of two vectors.
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where the radius vector

r! ≡ x,y,zð Þ ð5.4.9Þ
extends from the origin of the coordinate system to (x, y, z) and the unit vector

êx = 1,0,0ð Þ is oriented along the x-direction. The distance between a point
r
!
1 = x1, y1, z1ð Þ and the plane of Equation (5.4.8) equals x1−a = êx�r!1−a. Since both
êx� r! and a are scalars and thus unchanged under rotations,

ê
k
! � r! = g ð5.4.10Þ

similarly represents a plane perpendicular to ê
k
!= kx, ky, kz
	 


=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x + k

2
y + k

2
z

q
=

cosγx, cosγy, cosγz
	 


corresponding to Equation (4.4.8) with a minimum distance

g from the origin. The distance from a point r!1 = x1, y1, z1ð Þ to the above plane is
found from

ê
k
! �r!1−g ð5.4.11Þ

5.5 CROSS AND OUTER PRODUCTS

The cross product A
!
× B

!
of two vectors A

!
and B

!
can be represented geometrically,

after displacing the tails of both vectors to the origin, as in Figure 5.1, as a

(pseudo)vector with a magnitude A
!
× B

!��� ��� equal to the area of the parallelogram

described by the endpoints of the vectors A
!
, B

!
and a direction ê

A
!
×B

! determined by

the right-hand rule in which the vector A
!
is turned with the fingers of one’s right

hand into the vector B
!
; the thumb then points in the direction of the cross product

(out of the paper in Figure 5.1). Accordingly,

A
!
× B

!
= − B

!
× A

! ð5.5.1Þ
The right-hand rule assumes a right-handed coordinate system, for which the cross

product of x̂ and ŷ is oriented in the + ẑ direction. This convention must therefore

be strictly observed when drawing axes. Algebraically, the cross product coincides
with the determinant

A
!
× B

!
=

êx êy êz

ax ay az

bx by bz

��������

��������
ð5.5.2Þ

or, in terms of the three-component Levi-Civita tensor,

A
!
× B

!� �
i
= εijkajbk ð5.5.3Þ

40 VECTORS AND MATRICES

www.Technicalbookspdf.com



The law of sines can be derived from the area of a triangle written as

area =
1
2
A
!
× B

!��� ���= 1
2
B
!
× C

!��� ��� = 1
2
C
!
× A

!��� ��� ð5.5.4Þ

in which A
!
, B

!
, C

!
= A

!
+ B

!
are vectors that lie along the three sides of the triangle.

Labeling, e.g., the angle between A
!
and B

!
and therefore opposite to C

!
by χ and

the angles opposite to A
!
and B

!
by α and β respectively, Equation (5.5.4) yields

AB sin χ = AC sin β = BC sin α or, after division by ABC,

sinα
A

=
sinβ
B

=
sinχ
C

ð5.5.5Þ

Finally, the outer product of A
!
and B

!
yields the matrix A

!�B
!� �

ij
= aibj , or AiBj in

Einstein notation. The cross product can be identified with the antisymmetric
component of the outer product in three dimensions since

A
!�B

!
=

a1

a2

a3

0
B@

1
CA b1 b2 b3ð Þ =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

0
B@

1
CA

=
1
2

A
!� B

!
+ B

! � A
!� �

+
1
2

A
!�B

!
− B

! � A
!� �

ð5.5.6Þ

for which the second antisymmetric part yields

1
2

A
!� B

!
− B

! � A
!� �

=
1
2

0 a1b2−a2b1 a1b3−a3b1

− a1b2−a2b1ð Þ 0 a2b3−a3b2

− a1b3−a3b1ð Þ − a2b3−a3b2ð Þ 0

0
BB@

1
CCA

=
1
2

0 A
!
× B

!� �
3

− A
!
× B

!� �
2

− A
!
× B

!� �
3

0 A
!
× B

!� �
1

A
!
× B

!� �
2

− A
!
× B

!� �
1

0

0
BBBBB@

1
CCCCCA

ð5.5.7Þ

5.6 VECTOR IDENTITIES

Numerous identities resulting from the properties of the Levi-Civita symbol,
Equation (5.3.5), relate dot and cross products. From the invariance of εijkwith respect
to cyclic permutations of i, j, k, εijkAiBjCk = εkijCkAiBj = εjkiBjCkAior, in vector notation,

A
! � B

!
× C

!� �
= C

! � A
!
× B

!� �
= B

! � C
!
× A

!� �
ð5.6.1Þ
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Equation (5.6.1) also follows from

A
! � B

!
× C

!� �
=

ax ay az

bx by bz

cx cy cz

��������

��������
ð5.6.2Þ

since interchanging an even number of rows or columns does not affect the deter-
minant. Further,

εijkεilm = δjlδkm−δjmδkl ð5.6.3Þ
as interchanging either j and k or l and m changes the sign of the product as a result of
the antisymmetry of εijk. Consequently, from Equation (5.6.3)

A
!
× B

!
× C

!� �h i
i
= εijkεklmAjBlCm = εkijεklm AjBlCm = B

!
A
! �C!
� �

− C
!

A
!�B!
� �h i

i

ð5.6.4Þ

sometimes termed the “BAC −CAB” rule. Equation (5.6.3) further yields the identity

A
!
× B

!� �
� C

!
× D

!� �
= A

! �C!
� �

B
! �D!
� �

− A
! �D!
� �

B
! �C!
� �

ð5.6.5Þ

5.7 ROTATIONS AND ORTHOGONAL MATRICES

Vector rotation can be described either by rotating the vector in a positive
(counterclockwise) angle θ with respect to a fixed coordinate system or by rotating
the coordinate basis vectors by − θ while the vector remains stationary. In two

dimensions, rotating a vector A
!
that initially describes an angle of θ0 with respect

to the x-axis yields

Ax0 =Acos θ + θ'ð Þ=A cosθcosθ0− sinθ sinθ0ð Þ =Ax cosθ−Ay sinθ
Ay0 =Asin θ + θ'ð Þ =A sinθcosθ0 + cosθ sinθ0ð Þ=Ax sinθ +Ay cosθ

ð5.7.1Þ

or in terms of the rotation matrix R(θ),

Ax0

Ay0

� �
=

cosθ − sinθ
sinθ cosθ

� �
Ax

Ay

� �
=R θð Þ Ax

Ay

� �
ð5.7.2Þ

If the coordinate system is instead rotated by +θ, θ is replaced by −θ in Equation (5.7.2).

The dot product ðB! ��A!Þ, abbreviated as (BjA) below, of any two vectors is preserved
under rotation since

Ax0 Ay0ð Þ Bx0

By0

� �
= R θð Þ Ax

Ay

� �� �T
R θð Þ Bx

By

� �
= Ax Ayð ÞRT θð ÞR θð Þ Bx

By

� �
ð5.7.3Þ
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while

RT θð ÞR θð Þ=R −θð ÞR θð Þ= cosθ sinθ
− sinθ cosθ

� �
cosθ − sinθ
sinθ cosθ

� �
= I ð5.7.4Þ

In general, transformation matrices that preserve the dot product satisfy the orthogo-

nality property

RT =R−1 ð5.7.5Þ
The determinant of an orthogonal matrix equals ± 1 since

detR = detRT = detR−1 =
1

detR
ð5.7.6Þ

Unit determinant (special orthogonal) matrices correspond to rotations.
Since length is a real scalar quantity, for a complex vector x

!, the squared length is
identified with

xjxh i≡ x
!†� x! = x∗1 x

∗
2 � � �x∗nð Þ

x1
x2
..
.

xn

0
BBB@

1
CCCA= x1j j2 + x2j j2 + � � �+ xnj j2 ð5.7.7Þ

where the notation jxi and hxj is employed to distinguish intrinsically complex quan-

tities x
! and x

!† from real vectors jx) and (xj. For two vectors, since (AB)† =B†A†,
under a transformation x0 =Ux

x0jy0h i= UxjUyh i= xh jU†U yj i ð5.7.8Þ

Therefore, hx0j y0i = hxj yi if the unitary condition U†U = I or

U† =U−1 ð5.7.9Þ
is fulfilled. For real vectors, Equation (5.7.7) coincides with Equation (5.7.5) so that
all orthogonal matrices are unitary. The magnitude jdetUj = 1 since detU detU†= 1
and detA = detAT imply

detU =
1

detU†
=

1

detUT
	 
∗ = 1

detUð Þ∗ ð5.7.10Þ

5.8 GROUPS AND MATRIX GENERATORS

A group comprises a set of elements together with an associative, but not necessarily

commutative, product operator A� (B�C) = (A� B)� C such that the product of

two group elements is a group element, an identity element exists, and every member
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of the group possesses an inverse. For a continuous group, every group element
O(α) can be written as an infinite product of elements that approximate the identity;
i.e., O αð Þ = lim

N!∞
O α=Nð Þð ÞN with O(0) = I. Such groups arise when solving differen-

tial equations through repeated infinitesimal steps.
To illustrate, as N!∞, to order α/N (i.e., neglecting powers of α/N greater than

the first), for the skew-symmetric (A = −AT) group generator A below, the group
element

O
α

N

� �
= I +

α

N
A= I+

α

N

0 −1

1 0

 !
ð5.8.1Þ

is orthogonal, e.g., neglecting terms of higher order than α/N,

OT α

N

� �
O

α

N

� �
=

1
α

N
−
α

N
1

0
@

1
A 1 −

α

N
α

N
1

0
@

1
A=

1 +
α2

N2
0

0 1 +
α2

N2

0
B@

1
CA≈I ð5.8.2Þ

while det (O(α/N))≈ 1 to this order. A continuous group of orthogonal transforma-
tions is constructed through the infinite product for any skew-symmetric A,

O αð Þ= lim
N!∞

I+
α

N
A

� �N
! I +

α

1!
A+

α2

2!
A2 + � � �= eαA ð5.8.3Þ

with inverse

O−1 αð Þ = I+
α

1!
A +

α2

2!
A2 + � � �

� �T

= I+
α

1!
AT +

α2

2!
A2
	 
T

+ � � �

= I−
α

1!
A+

α2

2!
A2 + � � �

= e−A =O −αð Þ

ð5.8.4Þ

In particular, for the two-dimensional matrix of Equation (5.8.1) for which A2 = − I:

e
α

0 −1
1 0

� �
=

1 0

0 1

 !
+
α

1!

0 −1

1 0

 !
−
α2

2!

1 0

0 1

 !
−
α3

3!

0 −1

1 0

 !
+ � � �

= 1−
α2

2!
+ � � �

� � 1 0

0 1

 !
+ α−

α3

3!
+ � � �

� � 0 −1

1 0

 !

=
cosα − sinα

sinα cosα

 !
= R αð Þ

ð5.8.5Þ
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For complex vectors, unitary transformations are constructed from skew-Hermitian
generators Swith S† = − S (or equivalently from i times a Hermitian operator S = iH) as

U αð Þ= lim
N!∞

I+
α

N
S

� �N
! I+

α

1!
S+

α2

2!
S2 + � � � = eαS = eiαH ð5.8.6Þ

with the inverse transformation, in analogy to Equation (5.8.4),

U−1 αð Þ= I+
α

1!
S+

α2

2!
S2 + � � �

� �†

= I+
α

1!
S† +

α2

2!
S2
	 
†

+ � � �

= I−
α

1!
S+

α2

2!
S2 + � � �

= e−αS =U −αð Þ

ð5.8.7Þ

5.9 EIGENVALUES AND EIGENVECTORS

An eigenvector of a matrix, M, is preserved up to a scaling factor, λi, termed the
corresponding eigenvalue, upon multiplication byM. That is, for an eigenvector jϕii
expressed as a column vector:

M ϕij i= λi ϕij i ð5.9.1Þ

Themethod for finding eigenvalues and eigenvectors can be illustrated by inserting

M=
0 1

−1 0

� �
ð5.9.2Þ

into Equation (5.9.1)

M ϕj i= 0 1

−1 0

� �
x1
x2

� �
= λ ϕj i= λ x1

x2

� �
= λ

1 0

0 1

� �
x1
x2

� �
ð5.9.3Þ

or equivalently

M−λIð Þ x1
x2

� �
=

−λ 1

−1 −λ

� �
x1
x2

� �
=

0

0

� �
ð5.9.4Þ

If (M − λI)−1 exists, Equation (5.9.4) implies x1 = x2 = 0 as evident, e.g., from
Equation (5.3.17). However, when

det
−λ 1

−1 −λ

� �
= 0 ð5.9.5Þ
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(M − λI)− 1 is not invertible as the first and second rows of M − λI are proportional.
The rank of the matrix is then less than its dimension, leading to the nontrivial solution
λx1 = x2 or, equivalently, x1 = − λx2. Equation (5.9.5) accordingly requires that λ satis-
fies the characteristic equation λ2 + 1 = 0 yielding the two eigenvalues λ1 = i, λ2 = − i.
The corresponding eigenvectors are determined directly from λx1 = x2 or by substitut-

ing each eigenvalue into Equation (5.9.3) and solving for x1 in terms of x2. For λ1 = i,

0 1
−1 0

� �
x1
x2

� �
= i

x1
x2

� �
ð5.9.6Þ

and both rows of the equation system as required yield x2 = ix1. Setting initially

either x1 = 1 or x2 = 1 and subsequently normalizing the resulting eigenvector to unit

amplitude result in

ϕ1j i = 1ffiffiffi
2

p 1
i

� �
ð5.9.7Þ

The eigenvalues of Hermitian and anti-Hermitian matrices are purely real and

imaginary, respectively. Further, as a unitary matrix can be written U = eiαH with H
Hermitian, each eigenvector jϕii of H with eigenvalue λi is simultaneously an
eigenvector of U with eigenvalue eiαλi ; hence, the eigenvalues of a unitary matrix are
positioned on the unit circle in the complex plane. Further, the eigenvalues of an
even-order (2N × 2N) skew-symmetric matrix occur in pairs ± λi, while an odd-order
skew-symmetric matrix additionally possesses a zero eigenvalue. A skew-Hermitian
matrix similarly possesses pairs of imaginary eigenvalues ± ijλij or zero.

The eigenvectors of Hermitian matrices with different eigenvalues are orthogonal

and can be orthonormalized such that hϕij ϕji = δij. That is, for a normalized eigen-
vector jϕii with Hjϕii = λijϕii,

ϕj

� ��H ϕij i = x∗j1, x
∗
j2
,…, x∗jn

� �
H

xi1
xi2
..
.

xin

0
BBB@

1
CCCA= λi ϕjjϕi

� � ð5.9.8Þ

At the same time, however, since A†H† = (HA)†,

ϕj

� ��H ϕij i= ϕj

� ��H† ϕij i= H

xj1
xj2
..
.

xjn

0
BBB@

1
CCCA

0
BBB@

1
CCCA

†
xi1
xi2
..
.

xin

0
BBB@

1
CCCA= λ∗j ϕjjϕi

� � ð5.9.9Þ

Hence, either λi = λ∗j and λi is real or hϕij ϕji = 0.
The Gram–Schmidt procedure can be employed to transform N degenerate

eigenvectors jξii that possess the same eigenvalue, λm, into a set of N orthonormal
eigenfunctions jϕii according to
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ϕ1j i= ξ1j i
ξ1j ξ1h i12

ϕ0
2

�� �
= ξ2j i− ϕ1j ξ2h i ϕ1j i

ϕ2j i= ϕ0
2

�� �
ϕ0
2jϕ0

2

� �1
2

ϕ0
3

�� �
= ξ3− ϕ2j ξ3h i ϕ2j i− ϕ1j ξ3h i ϕ1j i

..

.

ð5.9.10Þ

The eigenvectors of a Hermitian operator form a complete set; i.e., if H is an N ×N
matrix, any n-component complex-valued vector can be expressed as a linear
superposition of the eigenvectors

Vj i =
Xn
i= 1

cn ϕnj i ð5.9.11Þ

where the real or complex coefficients cn are obtained by multiplying both sides
of the above equation with the vector hϕpj and employing the orthonormality
of the jϕni:

cp = ϕpjV
� � ð5.9.12Þ

Combining the two above equations yields for any vector jVi

Vj i=
Xn
i= 1

ϕij i ϕijVh i ð5.9.13Þ

implying that the identity matrix can be represented by

I =
Xn
i= 1

ϕij i ϕih j=

x11x∗11 x11x∗12 x11x∗13 � � �
x12x∗11 x12x∗12 x12x∗13 � � �
x13x∗11 x13x∗12 x13x∗13 � � �

..

. ..
. ..

. . .
.

0
BBBBB@

1
CCCCCA

+

x21x∗21 x21x∗22 x21x∗23 � � �
x22x∗21 x22x∗22 x22x∗23 � � �
x23x∗21 x23x∗22 x23x∗23 � � �

..

. ..
. ..

. . .
.

0
BBBBB@

1
CCCCCA

+…

ð5.9.14Þ

as is evident by considering the effect of multiplying on the left by hϕjj and on the right
by jϕki. Multiplying by the above representation of I accordingly transforms a vector

into its eigenvector expansion. This implies the Cayley–Hamilton theorem, which

states that a matrix satisfies its characteristic equation, λn + an − 1λ
n − 1 +… + a0 = 0,

for H since for any n-dimensional vector jVi,
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Hn + an−1Hn−1 +…+ a0
	 


Vj i= Hn + an−1Hn−1 +…+ a0
	 
Xn

i= 1

ci ϕij i ϕijVh i

=
Xn
i= 1

ci λ
n
i + an−1λ

n−1
i +…+ a0

	 

ϕij i ϕijVh i

= 0

ð5.9.15Þ

5.10 SIMILARITY TRANSFORMATIONS

Two matrices A and B are similar if an invertible matrix W exists such that

A=W−1BW ð5.10.1Þ
Similar matrices share the same characteristic polynomial and therefore possess iden-

tical eigenvalues as

det A−λIð Þ = det W−1BW−λW−1W
	 


= det W−1
	 


det B−λIð Þdet Wð Þ

= det B−λIð Þ 1

�det Wð Þ �det Wð Þ
ð5.10.2Þ

However, two matrices with the same eigenvalues are not necessarily similar.
A Hermitian matrix H is similar to a diagonal matrix D with

H =W−1DW ð5.10.3Þ

and Dij = 0 for i 6¼ j. The matrix W can be formed from the eigenvectors of H
according to

H =
Xn
i, j= 1

ϕj

�� �
ϕj Hj jϕi

� �
ϕih j ð5.10.4Þ

Since hϕjjHjϕii = λiδij, the above equation can be written as

H= ϕ1

������ϕ2

������ ϕn

������
0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W −1

λ1
. .
.

λn

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
D

ϕ∗
1��

��
ϕ∗
n

0
BB@

1
CCA

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
W

ð5.10.5Þ

To verify the above expression explicitly, note that the product Hjϕii equals λijϕii.
Hence, H produces the correct result when it multiplies any linear combination of

48 VECTORS AND MATRICES

www.Technicalbookspdf.com



eigenfunctions. Further, from the orthonormality of the jϕki, W† =W−1 so that W is
unitary and

H−1 = ϕ1

������ϕ2

������ ϕn

������
0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W −1

1=λ1
. .
.

1=λn

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D−1

ϕ∗
1��

��
ϕ∗
n

0
BB@

1
CCA

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
W

ð5.10.6Þ

The condition number of H approximates the ratio of the largest to the smallest
eigenvalue. This provides an estimate of the proximity of H to a singular matrix
and hence the error encountered when inverting the matrix numerically.
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6
CALCULUS OF A SINGLE VARIABLE

Calculus extends algebra through the introduction of limits. Inverse problems such as
integration reverse the limiting operations and generally require specialized solution
techniques.

6.1 DERIVATIVES

While a line cannot be specified by a single point, a unique tangent line does exist at
each point on a (differentiable) curve. This apparent contradiction is resolved by
defining the tangent as the limit of a secant to the curve as the distance between
the points at which the secant is evaluated approaches zero. The derivative operator,
where an operator maps one or more functions to a second function in the same

manner that a function transforms one or more input values into an output value,
applied to a function, f(x), yields the slope of the tangent to the function at each point,
x, and is accordingly conventionally identifiedwith theΔx! 0 limit of the secant slope

df

dx
= lim

Δx!0

f x+Δxð Þ− f xð Þ
Δx

ð6.1.1Þ
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In numerical computation, the above forward difference definition is generally
replaced by the more accurate central difference formula

df

dx
= lim

Δx!0

f x+Δx=2ð Þ− f x−Δx=2ð Þ
Δx

ð6.1.2Þ

As an example, from the binomial theorem,

dxn

dx
= lim

Δx!0

x +Δxð Þn−xn
Δx

= lim
Δx!0

xn + nxn−1Δx + n n−1ð Þ=2!ð Þxn−2Δx2 +…−xn

Δx

= lim
Δx!0

nxn−1 + n n−1ð Þ=2!ð Þxn−2Δx +…� �
= nxn−1

ð6.1.3Þ

The following formulas follow directly from power series expansions:

d sinx
dx

= cosx

dcosx
dx

= − sinx

dex

dx
= ex

ð6.1.4Þ

The derivative is a linear operator since ( f + g)0 = f 0 + g0, where the prime denotes the
derivative with respect to the function argument.

The product rule is derived from Equation (6.1.1) according to

fgð Þ0 = lim
Δx!0

f x +Δxð Þg x+Δxð Þ− f xð Þg xð Þ
Δx

= lim
Δx!0

f xð Þ +Δxf 0 xð Þð Þ g xð Þ+Δxg0 xð Þð Þ− f xð Þg xð Þ
Δx

= lim
Δx!0

Δx f 0 xð Þg xð Þ + f xð Þg0 xð Þð Þ
Δx

+Δxf 0 xð Þg0 xð Þ
2
4

3
5

= f 0 xð Þg xð Þ + f xð Þg0 xð Þ

ð6.1.5Þ

The chain rule is instead applicable to functions of other functions typified by sin(x2),
which can be represented as f(g(x)) with f(x) = sin x and g(x) = x2. Applying the
derivative formula twice,
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df g xð Þð Þ
dx

= lim
Δx!0

f g x +Δxð Þð Þ− f g xð Þð Þ
Δx

= lim
Δx!0

f g xð Þ+ g0 xð ÞΔxð Þ− f g xð Þð Þ
Δx

= lim
Δx!0

f g xð Þð Þ+ f 0 g xð Þð Þg0 xð ÞΔx− f g xð Þð Þ
Δx

=
df g xð Þð Þ
d g xð Þð Þ

dg xð Þ
dx

ð6.1.6Þ

Thus, d sin(x2)/dx = d sin(x2)/d(x2) × dx2/dx = 2x cos(x2), and similarly,

dax

dx
=
d elna
� �x
dx

=
dexlna

dx
= exlna lna = ax lna ð6.1.7Þ

The derivative of the quotient of two functions is then given by

d

dx

f xð Þ
g xð Þ

 !
=

d

dx
f xð Þ g xð Þð Þ−1
� �

= f 0 xð Þ g xð Þð Þ−1 + f xð Þ − g xð Þð Þ−2g0 xð Þ
� �

=
f 0 xð Þg xð Þ− f xð Þg0 xð Þ

g2 xð Þ

ð6.1.8Þ

as a particular consequence of which

d tanx
dx

= sec2x≡
1

cos2x
ð6.1.9Þ

Since an inverse function y = f −1(x) is a reflection of y = f(x) through the line y = x, its
slope equals the reciprocal of y0(x)

df −1 xð Þ
dx

=
dy

dx
=

1
dx
dy

ð6.1.10Þ

The resulting formula must then be reexpressed in terms of x by inserting y = f −1(x).
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Example

d sin−1x

dx
=

1
d siny
dy

=
1

cosy
=

1

cos sin−1x
� � = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− sin2 sin−1x
� �q =

1ffiffiffiffiffiffiffiffiffiffiffi
1−x2

p ð6.1.11Þ

In the same manner,

d ln xð Þ
dx

=
d exp−1 xð Þ

dx
=

1
dey
dy

=
1
ey

=
1
elnx

=
1
x

ð6.1.12Þ

For functions expressed in terms of a power of a second function as f(x) = cgn(x),

f 0 xð Þ = cngn−1 xð Þg0 xð Þ ð6.1.13Þ
and therefore,

f 0 xð Þ
f xð Þ = n

g0 xð Þ
g xð Þ ð6.1.14Þ

Example

k = 2π/λ = 2πλ− 1 implies dk/k = −dλ/λ or dk/dλ = −k/λ = −2π/λ2.

A function is represented parametrically by specifying both the independent and
dependent variables in terms of a parametric variable t as (x(t), y(t)). The derivative of
the parametric function with respect to a change in t is obtained from

lim
Δt!0

y t +Δtð Þ−y tð Þ
Δx tð Þ = lim

Δt!0

y t +Δtð Þ−y tð Þ
Δt

x t +Δtð Þ−x tð Þ
Δt

=

dy
dt
dx
dt

ð6.1.15Þ

Example

The half circle y = f xð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
a2−x2

p
can be expressed as (x(t), y(t)) = (a cos t, a sin t)

with π > t > 0 since eliminating t yields y = asin arccos x=að Þð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
a2−x2

p
(c.f.

Eq. 4.3.15). Hence,

dy

dx
=

dy
dt
dx
dt

=
acos t
−asin t

= −
x

y
ð6.1.16Þ

as can be verified by differentiating y =
ffiffiffiffiffiffiffiffiffiffiffiffi
a2−x2

p
directly.
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In the same manner that the derivative yields the slope of a curve, the second deriv-
ative quantifies the rate in change in slope. If the second derivative curve f(x) is pos-

itive, its slope increases with x, and the curve therefore opens upward, corresponding

to a positive curvature. The second and higher derivative operators can be obtained by
iterating, e.g., Equation (6.1.2) as, e.g., applying the central difference formula,

d2f

dx2
= lim

Δx!0

1
Δx

df

dx

����
x +Δx=2

−
df

dx

����
x−Δx=2

" #

= lim
Δx!0

1
Δx

f x +Δxð Þ− f xð Þ
Δx

� 	
−

f xð Þ− f x−Δxð Þ
Δx

� 	
 �

= lim
Δx!0

f x +Δxð Þ−2f xð Þ + f x−Δxð Þ
Δxð Þ2

ð6.1.17Þ

Thus, if d2f/dx2 > 0, the average of the function evaluated at two points close to but on
either side of a given point exceeds the value of function at the point, indicating an
upward curvature.

The critical points of a one-dimensional function are the points at which its first

derivative vanishes, and therefore, the tangent to its curve parallels the x-axis. If

the second derivative is positive at a critical point, the function describes a parabola

that opens upward near the point that therefore constitutes a minimum, while a neg-

ative second derivative similarly implies that the point constitutes a maximum. If the

second derivative passes through zero at the critical point, the function opens upward

on one side and downward on the opposing side of the point, which is then termed a

saddle point.
A quotient of two functions, f(x) and g(x), for which f(a) = g(a) = 0 is evaluated at

x = a from

lim
Δx!0

f a +Δxð Þ
g a+Δxð Þ = lim

Δx!0

f að Þ + df xð Þ
dx

����
x = a

Δx

g að Þ + dg xð Þ
dx

����
x = a

Δx
=

df xð Þ
dx

����
x= a

dg xð Þ
dx

����
x = a

ð6.1.18Þ

termed L’Hôpital’s rule. If additionally f 0(a) = g0(a) = 0, the above procedure is reap-
plied to the quotient of the two derivatives and, if necessary, further iterated until a
well-defined expression emerges.

6.2 INTEGRALS

While differentiation is a local operator involving the values of a function in the imme-
diate vicinity of a given point, its inverse operator, integration, requires function
values over an extended, global interval. A definite integral transforms its input

54 CALCULUS OF A SINGLE VARIABLE

www.Technicalbookspdf.com



function termed the integrand into a second function corresponding to the area under
the integrand between a reference point and the argument value. In one discrete real-
ization, the rectangular rule, the integration interval [a, b] is subdivided into N infin-
itesimal equal length segments, and the areas under the function within each segment
are approximated and summed according to

Ia f xð Þð Þ=
ðx
a
f x0ð Þdx0 =Δx lim

N!∞

XN−1

m = 0

f a +mΔxð Þ
" #

ð6.2.1Þ

in which Δx = (x − a)/N. In numerical implementations, the limit is evaluated as a
finite sum, while f(a +mΔx) is typically replaced by, e.g., f(a + (m + 0.5)Δx), which
is termed the midpoint rule, to enhance computational accuracy.

The inverse relationship between the integral and derivative operators follows
from, by canceling adjacent terms in the sum with the exception of the unpaired first
and last contributions,

Ia
df xð Þ
dx

� 	
=
ðx
a

df x0ð Þ
dx0

dx0 =Δx lim
N!∞

XN−1

m= 0

f a+ m + 1ð ÞΔxð Þ− f a+mΔxð Þ
Δx

0
@

1
A

2
4

3
5

= f a +NΔxð Þ− f að Þ
= f xð Þ− f að Þ

ð6.2.2Þ

which is often termed the fundamental theorem of calculus. Similarly,

d

dx
Ia f xð Þð Þ= d

dx

ðx
a
f x0ð Þdx0 =Δx lim

N!∞

XN
m= 0

f a +mΔxð Þ−
XN−1

m = 0

f a +mΔxð Þ

Δx

0
BBBB@

1
CCCCA

2
66664

3
77775 = f xð Þ

ð6.2.3Þ

Thus, an integral can often be performed by inferring which function the integrand is a

derivative of.

Example

d(log x)/dx = 1/x implies
ðx
a
1=x0ð Þdx0 = log xð Þ− log að Þ= log x=að Þ.

While an integral between specified upper and lower limits is termed a definite inte-
gral, an indefinite integral is evaluated without limits and yields the general expres-
sion whose derivative corresponds to the integrand.
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ExampleÐ
xdx = x2/2 + const, in which the (often suppressed) additive constant is typically

determined by specifying the value of the integral for a certain x.

Integrating both sides of the derivative product rule, Equation (6.1.5), over the
interval [a, b] yields

ðb
a
fg0dx=

ðb
a

d fgð Þ
dx

dx−

ðb
a
f 0gdx

= fgjba−
ðb
a
f 0gdx

ð6.2.4Þ

where f jba represents f(a) − f(b). This procedure, termed integration by parts, simpli-
fies integration of a product of two functions if the effect of differentiating f more
than compensates any increase in complexity resulting from integratinggor if, after some
number of applications, an expression proportional to the original integral is recovered.

Example

The factorial function is represented as an integral by the gamma function that can
be extended to noninteger and complex arguments:

Γ n + 1ð Þ≡
ð∞
0

e−x|{z}
g0 xð Þ

xn|{z}
f xð Þ

dx

= −e−x|ffl{zffl}
g xð Þ

xn|{z}
f xð Þ

�����
∞

0

−

ð∞
0

−e−x|ffl{zffl}
g xð Þ

nxn−1|fflffl{zfflffl}
f 0 xð Þ

dx

ð6.2.5Þ

as e− x at x =∞ and xn at x = 0 are zero. Hence, Γ(n + 1) = nΓ(n) while
Γ 1ð Þ= −exj∞0 = 1, implying that Γ(n + 1) = n! for integer n. As another illustration,
the logarithm can be integrated by

ðb
a
lnx|{z}
f xð Þ

1|{z}
g0 xð Þ

dx= x|{z}
g xð Þ

lnx|{z}
f xð Þ

�����
b

a

−

ðb
a

x|{z}
g xð Þ

1
x|{z}

f 0 xð Þ

dx= x lnx−xð Þ
�����
b

a

ð6.2.6Þ
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Two partial integrations generate an expression containing the original integral in

I =
ða
0
e−x|{z}
f xð Þ

cosx|ffl{zffl}
g0 xð Þ

dx= e−x sinxja0|fflfflfflfflffl{zfflfflfflfflffl}
e−a sina

−

ða
0

−e−x|ffl{zffl}
f 0 xð Þ= −~f xð Þ

sinx|ffl{zffl}
g xð Þ= ~g0 xð Þ

dx

= e−a sina + e−x|{z}
~f xð Þ

− cosxð Þ|fflfflfflfflffl{zfflfflfflfflffl}
~g xð Þ

�����
a

0

− I

I =
1
2
e−a sina− cosað Þ + 1ð Þ

ð6.2.7Þ
which can also be obtained by substituting cos x = (exp(ix) + exp(−ix))/2 and inte-
grating over the resulting sum of two exponential functions. Similarly, while
integrals over powers of trigonometric functions are normally performed by repeat-
edly applying double-angle formulas such as cos(2x) = 2 cos2x − 1 = 1 − 2 sin2x as in

I4 ≡
ð
sin4xdx

=
1
4

ð
1− cos 2xð Þð Þ2dx

=
1
4

ð
cos2 2xð Þ−2cos2x+ 1� �

dx

=
1
8

ð
cos 4xð Þ−4cos2x+ 3ð Þdx

=
1
32

sin 4xð Þ− 1
4
sin 2xð Þ+ 3

8
x

=
1
8

−2 sinxð Þ3 cosx−3sinxcosx+ 3x
� �

ð6.2.8Þ
they can also be derived through recursion relations obtained through partial inte-
gration such as

In =
ð

sinn−1x
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

f xð Þ

sinxð Þ|fflfflffl{zfflfflffl}
g0 xð Þ

dx

= − sinn−1 xcosx+ n−1ð Þ
ð
sinn−2xcos2xdx

= − sinn−1 xcosx+ n−1ð Þ
ð
sinn−2x 1− sin2x

� �
dx

= − sinn−1 xcosx+ n−1ð Þ In−2−Inð Þ
) nIn = − sinn−1xcosx + n−1ð ÞIn−2

ð6.2.9Þ
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For n = 4, since I0 = x, Equation (6.2.8) is reproduced in the form

4I4 = − sin3xcosx + 3
1
2

− sinxcosx+ xð Þ
� 	

ð6.2.10Þ

In this context, note that the average of sin2ax or cos2ax over any interval [x0, x0
+ π/a] equals 1/2. While this follows directly from cos2ax + sin2ax = 1 together
with the observation that the average of cos2ax and sin2ax over a length π/a must
be identical, direct integration gives

a

π

ðxo + π
a

x0

cos2axdx=
a

π

ðxo + π
a

x0

cos 2axð Þ+ 1
2

dx=
a

π

sin2ax
4

+
1
2

� 	����
xo + π

a

xo

=
1
2

ð6.2.11Þ

The integral counterpart of the derivative chain rule, Equation (6.1.6), is termed
integration by substitution. Changing the integration variable from x to y = g(x) yields

(observe especially the transformed limits)

ðb
a
f xð Þdx=

ðg bð Þ

g að Þ
f g−1 yð Þ� �dx

dy
dy ð6.2.12Þ

If f(g− 1(y))dx/dy = f(g− 1(y))dg− 1(y)/dy represents a total differential (the derivative of
a function), the integral can be performed.

Example

Substituting y = x2 and therefore dy = 2x dx into (or using xdx=dy = y½dðy½Þ=
dy = 1=2)

ðb
a
cos x2
� �

xdx ð6.2.13Þ

yields x cos x2(dx/dy) = (cos y)/2, which is the total differential of (sin y)/2. Hence,

ðb
a
cos x2
� �

xdx =
1
2

ðb2
a2
cosydy =

1
2

sinb2− sina2
� � ð6.2.14Þ

The above procedure is often abbreviated as
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ðb
a
cos x2
� �

xdx =
ðb
a
cosx2

1
2
d x2
� �

=
1
2
sinx2

��b
a

ð6.2.15Þ

To integrate the function y =
ffiffiffiffiffiffiffiffiffiffiffiffi
a2−x2

p
over the integral x = [−a, a] yielding the

area under a half circle, the parameterization x = a cos θ, y = a sin θ can be intro-
duced so that ða

−a
ydx=

ð0
π
y
dx

dθ
dθ

=
ð0
π
asinθ −asinθð Þdθ

= −a2
ð0
π
sin2θdθ

= −a2
ð0
π

1− cos2θ
2

dθ =
π

2
a2

ð6.2.16Þ

Integrals of inverse functions are similarly solved by substitution.

Example

Substituting x = sin y into

ðA
0

1ffiffiffiffiffiffiffiffiffiffiffi
1−x2

p dx ð6.2.17Þ

yields y = sin− 1x and dx = cos ydy, and hence,

ð sin−1A

sin−10

cosyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− sin2y

p dy=
ð sin−1A

0
dy= sin−1A ð6.2.18Þ

Finally, integrals of a ratio of polynomials N(x)/D(x) where the order of the
polynomial D(x) exceeds that of N(x) (otherwise, the two polynomials are divided
and the method applied to the remainder term) can be evaluated through partial
fraction decomposition. Here, D(x) is first factored into a product of lower-order

polynomials D1(x)D2(x)…Dn(x). The integrand is then written as a sum of terms

Ni(x)/Di(x) where the order of each Ni(x) is less than that of the corresponding

Di(x) and its coefficients are determined by equating the sum to N(x)/D(x).
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Example

After factoring the denominator of the integral

ðb
a

3x + 2
x2 + 3x + 2

dx=
ðb
a

3x+ 2
x+ 2ð Þ x + 1ð Þdx ð6.2.19Þ

the integrand can be written as a sum of lower-order polynomials with unknown
coefficients

3x + 2
x + 2ð Þ x+ 1ð Þ =

A

x + 2
+

B

x + 1
=
A x+ 1ð Þ +B x + 2ð Þ

x+ 2ð Þ x + 1ð Þ ð6.2.20Þ

which leads to the conditions

A+B= 3

A+ 2B= 2
ð6.2.21Þ

or A = 4, B = −1. Therefore,

ðb
a

3x + 2
x2 + 3x + 2

dx= 4ln
b+ 2
a+ 2

� 	
− ln

b+ 1
a+ 1

� 	
ð6.2.22Þ

6.3 SERIES

From the definition of the derivative, f(x +Δx) = (1 +Δx(d/dx))f(x), two values of
function f(x) a finite distance a = NΔx apart are related in the N!∞,Δx! 0 limit by

f x + að Þ= lim
N!∞

1 +
a

N

d

dx

� 	N
f xð Þ= ea ddxf xð Þ ð6.3.1Þ

Expanding the exponential as in Equation (4.3.3) generates the Taylor series

f x + að Þ= f xð Þ+ a

1!
df xð Þ
dx

+
a2

2!
d2f xð Þ
dx2

+ � � � ð6.3.2Þ

Such a power series expansion is valid within a finite or infinite radius of convergence
about the central point x.

60 CALCULUS OF A SINGLE VARIABLE

www.Technicalbookspdf.com



Example

Since xn increases more slowly with n than n! for large n, the Taylor series of
exp(x) and its even and odd parts, cosh(x), sinh(x), cos(x), and sin(x), possess
infinite convergence radii. The convergence radius of the geometric series
obtained by expanding f(x) = (1 − x)−1 about x = 0 instead equals unity as succes-
sive Taylor series terms diverge for real x > 1.

The convergence properties of a series S =Σ∞
n= 1sn can often be established as

follows, where an absolutely convergent series converges even if each element is
replaced by its absolute value.

• If a second seriesΣ∞
n= 1an is absolutely convergent and either jsnj < cjanj or jsn/sn − 1j

< cjan/an − 1j for all n > n0 with c a constant, then S is also absolutely convergent.

• S converges absolutely if jsn/sn − 1j < 1 for n > n0 or if limn!∞ snj j1=n < 1.
• In an alternating series for which successive terms have different signs, if jsnj
decreases monotonically to zero for large n, the series converges.

• If a positive, monotonically decreasing function f(x) can be found such that
f(k) = sk for integer k, then S is convergent if and only if

Ð ∞
1 f xð Þdx< ∞ .

• If the sn do not approach zero as n!∞, the series diverges.
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7
CALCULUS OF SEVERAL VARIABLES

In multiple dimensions, a function can be differentiated or integrated along different
spatial directions. As well, either the function or the derivative or integral operator can
correspond to a directed quantity. The multidimensional calculus of scalar functions
is examined in this chapter, while vector functions and operators are discussed in
subsequent chapters.

7.1 PARTIAL DERIVATIVES

The slope, or partial derivative, of a function of several variables, f(x1, x2,…, xn),
along the ith coordinate direction equals

∂f x!
� �
∂xi

= lim
Δxi!0

f x1,x2,…,xi +Δxi,…,xnð Þ− f x1,x2,…,xi,…,xnð Þ
Δxi

ð7.1.1Þ

Second-order partial derivatives comprise the second-order partial derivatives
∂2f=∂xi

2 and the second-order mixed derivatives ∂2f=∂xi∂xj. The mixed partial deriva-
tives are independent of the order in which the individual derivatives are evaluated,
e.g., in two dimensions,
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∂2f x,yð Þ
∂y∂x

= lim
Δy!0

1
Δy

∂f x,y+Δyð Þ
∂x

−
∂f x,yð Þ
∂x

� �

= lim
Δx,Δy!0

1
ΔxΔy

f x+Δx,y +Δyð Þ− f x,y+Δyð Þ½ �− f x +Δx,yð Þ− f x,yð Þ½ �ð Þ

= lim
Δx,Δy!0

1
ΔxΔy

f x+Δx,y +Δyð Þ− f x+Δx,yð Þ½ �− f x,y +Δyð Þ− f x,yð Þ½ �ð Þ

= lim
Δx!0

1
Δx

∂f x +Δx,yð Þ
∂y

−
∂f x,yð Þ
∂y

� �

=
∂2f x,yð Þ
∂x∂y

ð7.1.2Þ
If a function depends on two or more quantities that are functions of the coordinates,
its partial derivative is evaluated with the multidimensional generalization of the
chain rule

lim
Δx!0

f g x +Δx,yð Þ,h x +Δx,yð Þð Þ− f g x,yð Þ,h x,yð Þð Þ
Δx

= lim
Δx!0

f g x,yð Þ+Δx∂g
∂x

,h x,yð Þ+Δx∂h
∂x

� �
− f g x,yð Þ,h x,yð Þð Þ

Δx

≈
∂g

∂x

∂f g,hð Þ
∂g

+
∂h

∂x

∂f g,hð Þ
∂h

ð7.1.3Þ

The derivative ∂y/∂x|z for (x, y) restricted to a curve in the x–y plane defined by the
constraint z(x, y) = c yields the slope of y(x) along the curve, while ∂x/∂y|z is the recip-
rocal of the slope with

∂y

∂x

����
z x,yð Þ= c

=
1

∂x

∂y

����
z x,yð Þ= c

ð7.1.4Þ

Example

For z(x, y) = x2 + y = 3 at (1, 2), ∂y=∂xjz = −2xjx = 1 = −2, while ∂x=∂yjz = −1=
2
ffiffiffiffiffiffiffiffiffi
3−y

pð Þjy = 2 = −1=2

If x and y are restricted to a curve z(x, y) = c, changes in these variables leave z(x, y)
unaffected. Accordingly, if z(x, y) is approximated by a planar surface in the vicinity
of (x, y),
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z x +Δx,y+Δyð Þ = �z x,yð Þ+

,

z x +Δx,yð Þ− �z x,yð Þ
� �

+ z x +Δx,y +Δyð Þ−
,

z x +Δx,yð Þ
	 


≈z x,yð Þ + ∂z x,yð Þ
∂x

����
y

Δx+
∂z x +Δx,yð Þ

∂y

����
x+Δx

Δy + � � �

≈z x,yð Þ + ∂z x,yð Þ
∂y

����
x

Δy+
∂z x,yð Þ
∂x

����
y

Δx +
∂2z x,yð Þ
∂x∂y

ΔxΔy + � � �

≈z x,yð Þ + ∂z x,yð Þ
∂y

����
x

Δy+
∂z x,yð Þ
∂x

����
y

Δx + � � � ð7.1.5Þ

where in the last line only first-order terms are retained. SinceΔx andΔy are related by
the requirement that z(x +Δx, y +Δy) = z(x, y) = c,

z x+Δx,y +Δyð Þ−z x,yð Þ =Δz x,yð Þ= 0 = ∂z
∂x

����
y

Δx +
∂z

∂y

����
x

Δy ð7.1.6Þ

Thus (note carefully the minus sign),

∂x

∂y

����
z

= −

∂z

∂y

����
x

∂z

∂x

����
y

ð7.1.7Þ

Example

In the previous problem, dz/dy|x = 1, dz/dx|y = 2x = 2, yielding again ∂x/∂y|z = −1/2.

Finally, if a quantity w(x, y) varies subject to the constraint z(x, y) = c, Δx and
Δy, while still related by Equation (7.1.6), both result from a change in w.
Accordingly,

Δz = 0=
∂z

∂x

����
y

∂x

∂w

����
z

+
∂z

∂y

����
x

∂y

∂w

����
z

" #
Δw ð7.1.8Þ

which implies, where Equation (7.1.7) is applied in the last step,

∂y

∂w

����
z

∂x

∂w

����
z

= −

∂z

∂x

����
y

∂z

∂y

����
x

=
∂y

∂x

����
z

ð7.1.9Þ
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Example

If w = x + y while, as in the previous two examples, z = y + x2 = 3, at (1, 2),

∂y

∂w

����
z

=
1

∂w

∂y

����
z

=
1

∂x

∂y

����
z

+
∂y

∂y

����
z

=
1

−
1
2
+ 1

= 2

∂x

∂w

����
z

=
1

∂w

∂x

����
z

=
1

∂x

∂x

����
z

+
∂y

∂x

����
z

=
1

−2 + 1
= −1

ð7.1.10Þ

The ratio of these two quantities again equals ∂y=∂xjz = −2.

Finally, if a function g(x, y) is subject to the constraint z(x, y) = c, since the constraint
can be solved implicitly for either x(y) or y(x),

∂g

∂x

����
z

=
∂g x,y xð Þð Þ

∂x

����
z

=
∂g

∂x

����
y

+
∂g

∂y

����
x

∂y

∂x

����
z

∂g

∂y

����
z

=
∂g x yð Þ,yð Þ

∂y

����
z

=
∂g

∂x

����
y

∂x

∂y

����
z

+
∂g

∂y

����
x

ð7.1.11Þ

Often, in evaluating partial derivatives, incorrect variables are held constant.

Example

In transforming derivatives from Cartesian to polar coordinates for which x = r
cos θ, y = r sin θ, e.g., θ is unchanged by a displacement in the radial direction.
Therefore,

∂

∂r
=
∂x

∂r

����
θ

∂

∂x
+
∂y

∂r

����
θ

∂

∂y
= cosθ

∂

∂x
+ sinθ

∂

∂y

∂

∂θ
=
∂x

∂θ

����
r

∂

∂x
+
∂y

∂θ

����
r

∂

∂y
= −r sinθ

∂

∂x
+ rcosθ

∂

∂y

ð7.1.12Þ

This can be rewritten as

∂=∂r

1=rð Þ ∂=∂θð Þ
� �

=
cosθ sinθ
− sinθ cosθ

� �
∂=∂x
∂=∂y

� �
≡R

∂=∂x
∂=∂y

� �
ð7.1.13Þ

which implies

∂=∂x
∂=∂y

� �
=R−1 ∂=∂r

1=rð Þ ∂=∂θð Þ
� �

=
cosθ −sinθ
sinθ cosθ

� �
∂=∂r

1=rð Þ ∂=∂θð Þ
� �

ð7.1.14Þ
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Since r =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
,θ = tan−1 y=xð Þ, with d/dx(arctan x) = 1/(1 + x2), Equation

(7.1.14) also results from

∂

∂x
=
∂r

∂x

����
y

∂

∂r
+
∂θ

∂x

����
y

∂

∂θ
=

xffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p ∂

∂r
+

1

1 +
y
x

	 
2 −
y

x2

	 
 ∂

∂θ
ð7.1.15Þ

Here, the error of identifying ∂r/∂xjy with 1/(∂x/∂rjθ) = 1/cos θ must be avoided.
Then,

∂2

∂x2
= cosθ

∂

∂r
−
sinθ
r

∂

∂θ

� �
cosθ

∂

∂r
−
sinθ
r

∂

∂θ

� �

= cos2θ
∂2

∂r2
− cosθ sinθ

∂

∂r

1
r

∂

∂θ

� �
−
sinθ
r

∂

∂θ
cosθ

∂

∂r

� �

+
sinθ
r2

∂

∂θ
sinθ

∂

∂θ

� �
ð7.1.16Þ

Combining this with a similar formula for ∂2/∂y2 obtained by substituting sin θ!
cos θ and cos θ! −sin θ in the equation above yields the result, which is derived
more simply later,

∂2

∂x2
+

∂2

∂y2
=
1
r

∂

∂r
r
∂

∂r

� �
+
1
r2

∂2

∂θ2
ð7.1.17Þ

7.2 MULTIDIMENSIONAL TAYLOR SERIES AND EXTREMA

The Taylor series for functions of several variables is obtained from, as in a single
dimension,

f x + a,y+ bð Þ = lim
N!∞

1 +
a

N

∂

∂x
+
b

N

∂

∂y

� �N

f x,yð Þ

= e
a ∂
∂x + b ∂

∂yf x,yð Þ

≈ 1 +
a

1!
∂

∂x
+
b

1!
∂

∂y
+
a2

2!
∂2

∂x2
+
2ab
2!

∂2

∂x∂y
+
b2

2!
∂2

∂y2
+ � � �

 !
f x,yð Þ

ð7.2.1Þ
The last line in the above equation can be rewritten as, where, e.g., fx≡ ∂f=∂x,

f x + a,y + bð Þ= 1 + afx + bfy + fxx
2

a + b
fxy
fxx

� �2

+
b2

2
fyy−

f 2xy
fxx

 !
+ � � � ð7.2.2Þ
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Since the sign of the fourth term after the equals sign coincides with that of fxx, a
minimum requires

fx = fy = 0

fxx > 0

fyy−
f 2xy
fxx

> 0) fxx fyy− f
2
xy > 0

ð7.2.3Þ

For a maximum, the corresponding conditions are

fx = fy = 0

fxx < 0

fyy−
f 2xy
fxx

< 0) fxx fyy− f
2
xy > 0

ð7.2.4Þ

7.3 MULTIPLE INTEGRATION

The integral of a function f(x) from a to b can be recast as a sum or double integral over
all infinitesimal surface elements ΔxΔy (or dydx) within the region bounded by x = a,
x = b, y = 0, and y = f(x). This sum can be performed either by first summing the sur-
face elements along the y-direction for each Δx within the integration region and then
combining these partial sums or by first summing the surface elements along the x for
each Δy. The determination of the optimal order of integration is generally facilitated

by drawing the region.

Example

The integral of f(x) = x over the interval [0, a] can be written as a double integral:

a2

2
=
ða
0
xdx=

ða
0

ðx
0
dy

� �
dx≡

ða
0
dx

ðx
0
dy ð7.3.1Þ

If however the elements are first summed along x, since x varies between y and a
for a given y,ða

0
dy

ða
y
dx≡

ða
0

ða
y
dx

� �
dy=

ða
0
a−yð Þdy= a2− a2

2
=
a2

2
ð7.3.2Þ

Similarly, the area between a circle, x2 + (y − a)2 = a2, of radius a centered at (0, a)
with a < 0 and the x-axis can be written either as

2
ða
0
dx

ða− ffiffiffiffiffiffiffiffiffia2 −x2
p

0
dy ð7.3.3Þ

or, equivalently, after reversing the order of integration, as evident from Figure 7.1,
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2
ða
0
dy

ða
2ya−y2ð Þ1=2

dx ð7.3.4Þ

The integration order of Equation (7.3.4) simplifies, rather fortuitously, the
evaluation of, e.g., the integral of f(x, y) = xy/(y − a)2 over the above region:

2
ða
0
dy

y

y−að Þ2
ða

2ya−y2ð Þ1=2
xdx

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
2x

2ja2ya−y2ð Þ1=2 =
a−yð Þ2
2

=
ða
0
ydy =

a2

2
ð7.3.5Þ

If the integration limits in x do not depend on y and vice versa in a double integral over x

and y, the integration factors into two separate integrals can be performed in either order.

Example
ða
−a
xdx

ðb
−b
ydy=

ðb
−b
ydy

ða
−a
xdx= b2a2 ð7.3.6Þ

Accordingly, reversing the procedure,
ð∞
−∞

e− x
2
dx

� �2
=
ð∞
−∞

e− x
2
dx

ð∞
−∞

e− y
2
dy

=
ð∞
−∞

ð∞
−∞

e− x2 + y2ð Þdxdy

=
ð∞
0
e− r

2
rdr

ð2π
0
dθ

= 2π
ð∞
0

e−z

2
dz

= π

ð7.3.7Þ

a x

y

x =   2ya − y2

–a

FIGURE 7.1 Integration limits.
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where z = r2. From this result,

ð∞
−∞

e−ax
2
dx=

1ffiffiffi
a

p
ð∞
−∞

e−w
2
dw =

ffiffiffi
π

a

r

ð∞
−∞

x2e−ax
2
dx= −

d

da

ð∞
−∞

e−ax
2
dx= −

d

da

ffiffiffi
π

a

r
=

ffiffiffi
π

p
2

a−3=2

ð∞
−∞

x4e−ax
2
dx= −

d

da

ð∞
−∞

x2e−ax
2
dx=

3
2
×

ffiffiffi
π

p
2

a−5=2

ð7.3.8Þ

The latter formulas can also be derived by recasting the integrals as gamma func-
tions after substituting y = x2. Finally, completing the square in the exponent
enables the integration of

ð∞
−∞

e−ax
2
e−kxdx= e

k2

4a

ð∞
−∞

e

−a x+ k
2að Þ2|fflffl{zfflffl}
x 0 dx= e

k2

4a

ð∞
−∞

e−ax
02
dx0 =

ffiffiffi
π

a

r
e
k2

4a ð7.3.9Þ

7.4 VOLUMES AND SURFACES OF REVOLUTION

The area of a surface is obtained by double integration. Since the vector k
!
= a,b,cð Þ is

perpendicular to each plane k
!� r! + d = ax+ by+ cz + d = 0 (c.f. Eq. 5.4.10), the plane

tangent to the surface z − f(x, y) = 0 at (x0, y0) is from the Taylor series expansion
of f(x, y)

− x−x0ð Þ∂f
∂x

����
x0,y0

− y−y0ð Þ∂f
∂y

����
x0,y0

+ z− f x0, y0ð Þ= 0 ð7.4.1Þ

with the unit normal vector

ên = 1 +
∂f

∂x

� �2
+

∂f

∂y

� �2 !−1
2

−
∂f

∂x
, −

∂f

∂y
,1

� �
ð7.4.2Þ

The angle between the normal and the z-axis is obtained from the dot product between
the above vector and a unit vector in the z-direction:

ên�êz = cosθn̂, êz = 1+
∂f

∂x

� �2
+

∂f

∂y

� �2 !−1
2

ð7.4.3Þ
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The area of a surface element above the a region dxdy is augmented by a factor of
1/cos θn,z relative to the area of its projection on the x − y plane and therefore equals

dS=
1

cosθn,z
dxdy =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

∂f

∂x

� �2
+

∂f

∂y

� �2s
dxdy ð7.4.4Þ

yielding for the surface integral over a region R in x and y

S =
ð ð
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

∂f

∂x

� �2
+

∂f

∂y

� �2s
dxdy ð7.4.5Þ

The volume under the surface is the sum over all infinitesimal volume elements within
the region

V =
ð ð ð
R

dzdxdy =
ð ð
R

zdxdy ð7.4.6Þ

The volume of a solid of revolution situated between z1 and z2 with radius r = f(z) that
results when the curve f(z) is rotated around the z-axis is calculated by noting that the
volume of the cylindrical shell between z and z +Δz equals πr2dz and therefore

V = π
ðz2
z1

f zð Þð Þ2dz ð7.4.7Þ

Similarly, the surface area of the shell is 2πf zð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dz2 + dr2

p
, yielding for the area of the

entire solid

S = 2π
ðz2
z1

f zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

df zð Þ
dz

� �2s
dz ð7.4.8Þ

7.5 CHANGE OF VARIABLES AND JACOBIANS

The manner in which the differential volume element dxN in N dimensions trans-
forms under variable transformations can be extrapolated from the N = 2 case.
A transformation from the variables (x, y) to ( f(x, y), g(x, y)) maps the square region
determined by the two sides [(x0, y0), (x0 + dx0, y0)] and [(x0, y0), (x0, y0 + dy0)] to a
parallelogram with corresponding sides [( f(x0, y0), g(x0, y0))( f(x0 + dx, y0), g(x0 +
dx, y0))] and [( f(x0, y0), g(x0, y0))( f(x0,y0 + dy), g(x0,y0 + dy))]. The latter two sides
are to lowest order given by the vectors in the x − y plane from ( f(x0, y0), g(x0, y0))
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to f x0, y0ð Þ + ∂f=∂xjx= x0dx,g x0, y0ð Þ+ ∂g=∂xjx = x0dx
	 


and to f x0, y0ð Þ+ ∂f =∂yjy = y0dy,
	

g x0, y0ð Þ+ ∂g=∂yjy = y0dyÞ, respectively. The area of the parallelogram equals, accord-
ing to Equation (5.5.4), the magnitude of the three-dimensional cross product of the
two vectors

êzdfdg =

êx êy êz

∂f =∂x ∂f =∂y 0

∂g=∂x ∂g=∂y 0

��������

��������
dxdy = êz

∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x

� �
dxdy≡ êz

∂ f ,gð Þ
∂ x,yð Þ dxdy ð7.5.1Þ

The last expression introduces the standard notation for the determinant, termed
the Jacobian. In N dimensions, the analogous N ×N determinant replaces the two-
dimensional determinant.

If u and v are functions of x and y, while f and g are functions of u and v, then the
Jacobian for f and g in terms of x and y is, by the chain rule, Equation (7.1.3),

∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y

0
BB@

1
CCA=

∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x

∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y

∂g

∂u

∂u

∂x
+
∂g

∂v

∂v

∂x

∂g

∂u

∂u

∂y
+
∂g

∂v

∂v

∂y

0
BB@

1
CCA=

∂f

∂u

∂f

∂v
∂g

∂u

∂g

∂v

0
BB@

1
CCA

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

0
BB@

1
CCA ð7.5.2Þ

Accordingly, from det(AB) = det(A) det(B),

∂ f ,gð Þ
∂ x,yð Þ =

∂ f ,gð Þ
∂ u,vð Þ

∂ u,vð Þ
∂ x,yð Þ ð7.5.3Þ

which further implies

∂ f ,gð Þ
∂ u,vð Þ

∂ u,vð Þ
∂ f ,gð Þ = 1 ð7.5.4Þ

so that

dxdy=
∂ x,yð Þ
∂ f ,gð Þdfdg =

1
∂ f ,gð Þ
∂ x,yð Þ

dfdg ð7.5.5Þ
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8
CALCULUS OF VECTOR FUNCTIONS

In the same manner as the temperature within a region forms a scalar field, in a
vector field such as a velocity or force field, a directed quantity exists throughout a
spatial region. Limiting operations on vector fields are described by vector calculus,
introduced in this chapter.

8.1 GENERALIZED COORDINATES

In a general N dimensional coordinate system, each point in space is parameterized
by a unique set of coordinate values qj, j = 1, 2,…,N with local coordinate axes
directed along unit vectors êi qjð Þ. An infinitesimal change in a coordinate qj in an
orthogonal coordinate system yields a displacement only along the êj qjð Þ direction,
while in a nonorthogonal coordinate system in which some êi are not perpendicular,
the displacement additionally can alter components along additional coordinate
directions.
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© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

www.Technicalbookspdf.com



Example

In the nonorthogonal two-dimensional coordinate system with basis vectors ê1 = êx
and ê2 = êx + êy

� �
=
ffiffiffi
2

p
oriented at a 45� relative angle, changing q1 = x by unity yields

a displacement of unity along the ê1 direction and 1=
ffiffiffi
2

p
along the ê2 direction.

Three important orthogonal coordinate systems are Cartesian (x, y, z) coordinates,
cylindrical coordinates

x = rcosθ
y = r sinθ
z= z

ð8.1.1Þ

and spherical polar coordinates

x = r sinθcosϕ
y = r sinθ sinϕ
z = rcosθ

ð8.1.2Þ

The volume element in these coordinates is obtained from the Jacobian of the trans-
formation from Cartesian coordinates.

Example

For spherical coordinates, the volume element at (r, θ, ϕ) equals Jdrdθdϕ with,
where the last line corresponds to a cofactor expansion about the last row,

J =

dx

dr

dx

dθ

dx

dϕ
dy

dr

dy

dθ

dy

dϕ
dz

dr

dz

dθ

dz

dϕ

�������������

�������������

=

sinθcosϕ rcosθcosϕ −r sinθ sinϕ

sinθ sinϕ rcosθ sinϕ r sinθcosϕ

cosθ −r sinθ 0

��������

��������

= cosθ r2 sinθcosθ cos2ϕ + sin2ϕ
� �� �

+ r sinθ r sin2θ cos2ϕ + sin2ϕ
� �� �

= r2 sinθ

ð8.1.3Þ

The above result can also be simply obtained by drawing the volume element. The
spherical angle in steradians is defined by Δs2Δs3/r2 = sin θ Δθ Δϕ so that a unit
sphere subtends 4π steradians.

Example

Denoting the differential solid angle element in n dimensions by dΩn, the volume,
Vn, of an n-dimensional hypersphere can be obtained from, where Γ(x) represents
the gamma function,
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ffiffiffi
π

pð Þn =
ð∞

−∞

…

ð∞

−∞

e− x21 + x
3
2 +…x2nð Þdx1dx2…dxn

=
ð
rn−1e− r

2
dΩndr

=
ð
dΩn

ð
r2
� �n2 −1

e− r
2 dr2

2

=Ωn
1
2
Γ

n

2

� �
ð8.1.4Þ

implying that

Vn =
ðR
0
Ωnr

n−1dr =
Rn

n

2πn=2

Γ n=2ð Þ
� �

ð8.1.5Þ

For integer n, Γ(n/2) = (n/2 − 1)Γ is applied recursively together with

Γ
1
2

� �
=
ð∞
0
e−x

1ffiffiffi
x

p dx=
ð∞
0
e−x2d

ffiffiffi
x

p
= 2
ð∞
0
e− y

2
dy=

ð∞
−∞

e− y
2
dy=

ffiffiffi
π

p ð8.1.6Þ

Representing the change in length associated with a change dqi in the ith coordinate by
dsi and recalling that for a circle of radius r, the arclength subtended by an central
angle Δθ equals rΔθ,

Cartesian: ds1 = dx ds2 = dy ds3 = dz

Cylindrical : ds1 = dr ds2 = rdϕ ds3 = dz

Spherical : ds1 = dr ds2 = rdθ ds3 = r sinθdϕ

ð8.1.7Þ

The scale factors hi and associated unit vectors are, respectively, defined by
dsi = hidq

i and

êi =
∂ r

!

∂si
=
1
hi

∂ r
!

∂qi
ð8.1.8Þ

fromwhich unit vectors in one coordinate system can be expressed in other coordinate
systems.

Example

Example êϕ in a spherical coordinate system is represented in a rectangular
coordinate system as
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êϕ =
1

r sinθ
∂x

∂ϕ
,
∂y

∂ϕ
,
∂z

∂ϕ

0
@

1
A

=
1

r sinθ
∂ r sinθcosϕð Þ

∂ϕ
,
∂ r sinθ sinϕð Þ

∂ϕ
,
∂ rcosθð Þ

∂ϕ

0
@

1
A

= − sinϕ, cosϕ,0ð Þ

ð8.1.9Þ

In an arbitrary coordinate system, the metric tensor, gij, is defined by writing the
squared length element (ds)2 as, where xi denotes Cartesian coordinates,

dsð Þ2 =
Xn
i= 1

dxi
� �2

=
Xn
i, j= 1

∂xi

∂qj
dqj

� �
2

=
Xn

i, j, l= 1

∂xi

∂qj
∂xi

∂ql
dqjdql ≡

Xn
j, l= 1

gjldq
jdql ð8.1.10Þ

In an orthogonal coordinate system, gij is diagonal since

dsð Þ2 =
Xn
i= 1

hidq
i

� �2≡Xn
i, j= 1

gijdq
idqj ð8.1.11Þ

Example

For two-dimensional polar coordinates, x = r cos θ, y = r sin θ, ds1 = dr, ds2 =
rdθ, while

dx=
∂x

∂q1
dq1 +

∂x

∂q2
dq2 = cosθdr−r sinθdθ

dy=
∂y

∂q1
dq1 +

∂y

∂q2
dq2 = sinθdr + r cosθdθ

ð8.1.12Þ

from which (ds)2 = (dx)2 + (dy)2 = (dr)2 + r2(dθ)2 as expected.

While the components of a differential vector transform among coordinate systems
according to

dxi =
∂xi

∂qj
dqj ð8.1.13Þ

the analogous transformation law for derivatives is

∂ξ

∂xi
=
∂qj

∂xi
∂ξ

∂qj
ð8.1.14Þ
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Quantities such as displacement or velocity that transform as a standard vector accord-

ing to Equation (8.1.13) are termed contravariant and are distinguished when required

with upper indices, while quantities that follow the derivative transformation law are

labeled covariant vectors and possess lower indices.

The inner product or contraction of a contravariant and a covariant vector trans-

forms as a scalar

ajb
j =

∂xj

∂qm
a0m

∂qp

∂xj
b0p =

∂xj

∂qm
∂qp

∂xj
a0mb

0p = δmpa
0
mb

0p ð8.1.15Þ

Hence, multiplication of a contravariant vector by gij yields a covariant vector since in

gija
j =
Xn
m, j= 1

∂xm

∂qi
∂xm

∂qj
aj ð8.1.16Þ

the free index i is associatedwith a covariant derivative. The contravariantmetric tensor

gij =
Xn
m= 1

∂qi

∂xm
∂qj

∂xm
ð8.1.17Þ

instead transforms a covariant into a contravariant vector. Note that

gipgpj =
Xn

m, l,p= 1

∂xm

∂qi
∂xm

∂qp

� �
∂qp

∂xl
∂qj

∂xl

� �
=
Xn
m, l= 1

∂xm

∂qi
δml

∂qj

∂xl
=
Xn
m= 1

∂xm

∂qi
∂qj

∂xm
=
∂qj

∂qi
= δji

ð8.1.18Þ

so that gij = (gij)
− 1 while the mixed metric tensor equals the Kronecker delta function

gi
j =

∂qm

∂xi
∂xj

∂qm
= δi

j ð8.1.19Þ

Example

In spherical polar coordinates, the elements of gij and gij are given by, in
matrix form,

gij =
1 0 0
0 r2 0
0 0 r2 sin2θ

0
@

1
A, gij =

1 0 0

0
1
r2

0

0 0
1

r2 sin2θ

0
BBBBBB@

1
CCCCCCA

ð8.1.20Þ
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8.2 VECTOR DIFFERENTIAL OPERATORS

The basic operators of vector calculus consist of the gradient, which maps a scalar
function into a vector field; the divergence, which converts a vector field into a scalar
function; the curl, which transforms a vector field into a second (pseudo)vector field;
and the Laplacian, which maps a scalar function into a second scalar function.

Gradient: The gradient,r! f , quantifies the magnitude and direction of the slope of
a multidimensional function, f r

!� �, in analogy to a ball placed on a curved surface for
which a vector can be associated at each point with the direction opposite that in which
the ball rolls with a magnitude given by the slope along this direction. In a rectangular
coordinate system, from Equation (7.2.1), after neglecting second-order terms such as
ΔyΔx∂2f=∂y∂x,

f r
!+Δ r

!� �
= f x+Δx,y+Δy,z+Δzð Þ

≈ f x,y,zð Þ +Δ r
!� ∂f

∂x
,
∂f

∂y
,
∂f

∂z

0
@

1
A

≡ f r
!� �+Δ r

!�r! f = f r
!� �+ Δ r

!
��� ��� r! f

��� ���cosθΔr!,r!f
ð8.2.1Þ

For a fixed Δ r
!�� ��, the maximum positive change in f occurs when θΔr!,r!f = 0 so thatΔ r

!

and r! f are parallel. Thus, the gradient, r! f , expresses both the magnitude and the
direction of the maximum slope of f at each point. The slope of f in the direction of a

vector n! then equals the directional derivative:

df

dn
≡ ên!�r

!
f ð8.2.2Þ

In a general orthogonal coordinate system, if ên! is oriented along the direction of the
ith unit vector, the gradient must coincide with ∂f=∂si, so that

r! f =
Xn
i= 1

êi
∂f

∂si
=
Xn
i= 1

êi
1
hi

∂f

∂qi
ð8.2.3Þ

which for spherical coordinates evaluates to

rf = êr
∂

∂r
+ êθ

1
r

∂

∂θ
+ êϕ

1
r sinθ

∂

∂ϕ
ð8.2.4Þ

and for cylindrical coordinates

rf = êr
∂

∂r
+ êϕ

1
r

∂

∂ϕ
+ êz

∂

∂z
ð8.2.5Þ
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Divergence: If a vector field is viewed as an abstract flow of the field quantity, a scalar
function can be associated with the normalized total flow out of infinitesimal volume

elements centered at each point. That is, if ên and d S
!
= êndS denote the outward

normal to a surface and the infinitesimal surface element directed in the direction

of ên with a magnitude equal to the element area (e.g., d S
!
= dxdyêz for an element

in the x–y plane), the divergence

r! �A!≡ lim
ΔV!0

1
ΔV

þ
S

A
!�d S! = lim

ΔV!0

1
ΔV

þ
S

A
!�êndS ð8.2.6Þ

yields the net flow of A
!
per unit volume out of the infinitesimal volume element

ΔV enclosed by the surface S and therefore quantifies the strength of local sources

of A
!
inside ΔV. If the boundaries of ΔV coincide with unit vector directions,

Equation (8.2.6) becomes

r! �A!= lim
V!0

1
h1h2h3Δq1Δq2Δq3

Δq2Δq3 A1h2h3
���
q2 +Δq1,q2,q3ð Þ

−A1h2h3
���
q21,q2,qeð Þ

� 	

+ cyclic permutations

2
664

3
775

=
1

h1h2h3

∂

∂q1
A1h2h3ð Þ+ cyclic permutations

2
4

3
5

ð8.2.7Þ

In the Cartesian case, r! �A! =Σ3
i= 1∂Ai=∂xi , while for spherical coordinates,

r! �A! =
1
r2

∂

∂r
r2Ar

� �
+

1
r sinθ

∂

∂θ
sinθAθð Þ+ 1

r sinθ
∂

∂ϕ
Aϕ ð8.2.8Þ

and for cylindrical coordinates,

r! �A! =
1
r

∂

∂r
rArð Þ+ 1

r

∂

∂ϕ
Aϕ +

∂

∂z
Az ð8.2.9Þ

Laplacian: The Laplacian quantifies the curvature of a scalar function in multiple
dimensions. In analogy to the second derivative, which is proportional to twice the
amount by which the average value of the function evaluated at two points displaced
at an infinitesimal amount from a given point exceeds the value of the function at
the point itself, in, e.g., three dimensions,
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r2f = lim
Δx!0

f x +Δx,y,zð Þ+ f x,y +Δy,zð Þ + f x,y,z+Δzð Þ
+ f x−Δx,y,zð Þ + f x,y−Δy,zð Þ + f x,y,z−Δzð Þ−6f xð Þ

( )

Δxð Þ2

=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

ð8.2.10Þ

In arbitrary orthogonal coordinates, the Laplacian first transforms f through the gra-
dient operator into a vector field with a flow proportional to its slope and then applies

the divergence to generate a scalar field proportional to the outward flow ofr! f . Thus

if, e.g., r
!
0 is a local minimum of f, the gradientr! f will be directed away from r

!
0 at any

point in its vicinity and the outward flow will be positive. Combining
Equations (8.2.3) and (8.2.7),

r2f = r! �r! f =
1

h1h2h3

∂

∂q1

h2h3
h1

∂f

∂q1

� �
+ cyclic permutations

� �
ð8.2.11Þ

which yields in spherical coordinates

r2f =
1

r2 sinθ
∂

∂r
r2 sinθ

∂f

∂r

� �
+

∂

∂θ
sinθ

∂f

∂θ

� �
+

∂

∂ϕ

1
sinθ

∂f

∂ϕ

� �2
4

3
5

=
1
r2

∂

∂r
r2
∂f

∂r

� �
+

1
r2 sinθ

∂

∂θ
sinθ

∂f

∂θ

� �
+

1

r2 sin2θ

∂2f

∂ϕ2

ð8.2.12Þ

The first term in the above expression is also often written as

1
r2

∂

∂r
r2
∂f

∂r

� �
=
1
r2

∂

∂r
r
∂ rfð Þ
∂r

−rf

� �

=
1
r2

r
∂2 rfð Þ
∂r2

+
∂ rfð Þ
∂r

" #
−
∂ rfð Þ
∂r

 !

=
1
r

∂2 rfð Þ
∂r2

ð8.2.13Þ

In cylindrical coordinates,

r2f =
1
r

∂

∂r
r
∂f

∂r

� �
+
1
r2

∂2f

∂ϕ2 +
∂2f

∂z2
ð8.2.14Þ
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Curl: Finally, the curl evaluates a quantity analogous to the circulation around each
point in a fluid. By symmetry, a vector can only be meaningfully assigned to a
direction perpendicular to the plane of circulation. As a positive sign is typically
associated with the counterclockwise direction, this direction is determined by the
right-hand rule: wrapping one’s right-hand fingers around the circulation in given
plane yields the positive direction of the corresponding curl component.
A counterclockwise flow in the x–y plane accordingly generates a curl in the êz
direction. In an orthogonal coordinate system, the circulation per unit area along a
closed curve C equals the integral of the field component along the curve normalized
by its area S.

r! × A
!
≡ lim

S!0

1
S

ð

↺

C�S

A
!�d l! ð8.2.15Þ

With C taken along the coordinate axes (cf. Fig. 8.1),
the z-component of the curl evaluates to, with Δsi = hiΔqi,

r! × A
!
 �

3
=

1
h1h2Δq1Δq2

−A1Δs1
���

q1 +
Δq1
2

,q2 +Δq2
� � +A1Δs1

���
q1 +

Δq1
2

,q2

� �

−A2Δs2
���

q1,q2 +
Δq2
2

� � +A2Δs2
���

q1 +Δq1,q2 +
Δq2
2

� �

8>><
>>:

9>>=
>>;

=
1

h1h2Δq1Δq2
−

∂

∂q2
A1h1ð Þ + ∂

∂q1
A2h2ð Þ

8<
:

9=
;Δq1Δq2

=
1

h1h2

∂

∂q1
A2h2ð Þ− ∂

∂q2
A1h1ð Þ

8<
:

9=
;

ð8.2.16Þ

Since the indices 1, 2, and 3 can be cyclically interchanged (1! 2! 3! 1! � � �),

C

dl

(q1, q2 + Δq2)

(q1, q2)

(q1 + Δq1, q2 + Δq2)

(q1 + Δq1, q2)

FIGURE 8.1 Computation of curl.
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r! × A
!
=

1
h1h2h3

h1ê1 h2ê2 h3ê3

∂=∂q1 ∂=∂q2 ∂=∂q3

h1A1 h2A2 h3A3

���������

���������
ð8.2.17Þ

This yields in spherical coordinates

r! × A
!
=

1
r sinθ

∂

∂θ
sinθAϕ

� �
−
∂Aθ

∂ϕ

� �
êr +

1
r

1
sinθ

∂Ar

∂ϕ
−
∂rAϕ

∂r

� �
êθ +

1
r

∂rAθ

∂r
−
∂Ar

∂θ

� �
êϕ

ð8.2.18Þ

and in cylindrical coordinates

r! × A
!
=

1
r

∂Az

∂ϕ
−
∂Aϕ

∂z

� �
êr +

∂Ar

∂z
−
∂Az

∂r

� �
êϕ +

∂rAϕ

∂r
−
1
r

∂Ar

∂ϕ

� �
êz ð8.2.19Þ

8.3 VECTOR DIFFERENTIAL IDENTITIES

Numerous relationships exist between vector differential operators. Complex
expressions, especially those involving tensors, are sometimes most reliably derived
by writing out the individual terms in Cartesian coordinates. Alternatively, Einstein
notation can be employed together with the properties of the Levi-Civita tensor εijk.
The most compact procedure, however, expresses each derivative operator as the

sum of several individual operators that act on only a single term to its right and

assigns a corresponding subscript to the individual operators. The expressions are

then simplified while regarding each operator as an algebraic rather than a differential

quantity until each derivative acts exclusively on the term indicated by its

subscript, e.g.,

r! × f A
!
 �

=r!
A
!× f A

!
 �
+r!f × f A

!
 �
= fr!

A
! × A

!
− A

!
×r!f f = f r

!
× A

!
− A

!
× r! f

ð8.3.1Þ

A few common identities are, where all quantities f, g, A, B are functions of position,

r! × r! × A
!
 �

= r! r! � A!

 �

−r2 A
! ð8.3.2Þ

r! × A
!
× B

!
 �
= A

! r! � B!

 �

− A
! �r!

 �

B− B
! r! � A!

 �

+ B � r!

 �

A
! ð8.3.3Þ

r! fgð Þ= f r! g + gr! f ð8.3.4Þ
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8.4 GAUSS’S AND STOKES’ LAWS AND GREEN’S IDENTITIES

Since the divergence and curl are associatedwith the flux out of an infinitesimal volume
and the circulation around an infinitesimal closed curve, respectively, integrating these
quantities over finite regions yields the total flux out of or the net circulation along

the region boundary. That is, the integral of r! �A! over a finite connected volume V
can be expressed as a sum of integrals of the form of Equation (8.2.6) over all enclosed

infinitesimal subvolumes. However, in this sum, A
! � dS! cancels along the internal

boundary between each pair of adjacent subvolumes dV1 and dV2 as dS
!
around

dV1 is oppositely oriented to dS
!
of dV2. The resulting integral is therefore only

nonzero along the boundary surface S of V (denoted S� V), resulting in Gauss’s law

ð
V
r! �A!dV =

þ
S�V

A � dS! ð8.4.1Þ

Similarly, the integral of a curl over a finite surface can be expressed as a sum over
contributions from infinitesimal adjacent surface elements. If the curl evaluated over
each element is recast as a line integral along its boundary according to

Equation (8.2.15), the contributions of A
! �dl! to the overall sum from each internal

line segment shared by two surface elements dS
!
1 and dS

!
2 cancel since the dl

!
of

dS
!
1 is directed in the opposite direction to the coincident dl

!
of dS

!
2. Thus, only the

line integral over the boundary remains, leading to Stokes’ law

ð
S

r! × A
!
 �

� dS!=
ð

↺

C�S

A
! � dl! ð8.4.2Þ

where C is the curve bounding the surface S. The line integral is again performed
according to the right-hand rule in that wrapping one’s right-hand fingers around

C in the direction associated with positive dl
!
positions the thumb along the direction

corresponding to positive surface elements dS
!
.

Various integral relations follow fromStokes’ andGauss’s laws. For example, ifA
!
is

the product of a scalar field fmultiplied by a constant vector C
!
, from Equation (8.4.1),

ð
V
r! � C

!
f


 �
dV = C

! �
ð
V
r! f dV = C

! �
ð

↺

S
fdS

! ð8.4.3Þ

Since C
!
is arbitrary,

ð
V
r!fdV =

ð

↺

S
fdS

! ð8.4.4Þ
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Green’s second identity follows from Gauss’s law according to, where d S
!�r! is often

written as dS∂/∂n, the directional derivative in the direction of the normal to d S
!
,

ð

↺

S
ϕ1 r

!
ϕ2−ϕ2 r

!
ϕ1


 �
� dS!

=
ð
V
r! � ϕ1 r

!
ϕ2−ϕ2r

!
ϕ1


 �
dV

=
ð
V

r! ϕ1� r
!
ϕ2 +ϕ1r2ϕ2− r! ϕ2� r

!
ϕ1−ϕ2r2ϕ1


 �
dV

=
ð
V
ϕ1r2ϕ2−ϕ2r2ϕ1

� �
dV

ð8.4.5Þ

8.5 LAGRANGE MULTIPLIERS

A function f(x1, x2,…, xn) of several variables is constrainedwhen subject to auxiliary
conditions g1(x1, x2,…, xn) = c1, g2(x1, x2,…, xn) = c2,…,. At each stationary point

(maxima, minima, and saddle points) of f, the directional derivative, ên!�r
!
f , must

vanish for any ên! along the surface g1(x1, x2,…, xn) = c1 (otherwise, the function

would increase along the surface in the direction of ên!). Further, ên!�r
!
g1 =

r! c1 = 0 along this surface, and therefore, for some constant Lagrange multiplier λ,

r! f = −λr! g1 = c1. Similarly, r! f + λg1ð Þ must be proportional to r! g2 = c2,….
Hence, the extrema can be found by equating the gradient of f + λ1g1 + λ2g2 +… to

zero and subsequently imposing the initial constraints gi = ci.

Example

The extremum of f(x, y) = x2 + y2 subject to g(x, y) = x + y − 1 = 0 is obtained from

δf =
∂f

∂x
δx +

∂f

∂y
δy = 2xδx + 2yδy = 0 ð8.5.1Þ

However, x and y must further satisfy g(x, y) = x + y = 1 so that

∂g

∂x
δx +

∂g

∂y
δy = δx + δy = 0 ð8.5.2Þ

The expressions in Equations (8.5.1) and (8.5.2) both equal zero and are thus
proportional. Hence, for some λ,

2xδx + 2yδy = −λ δx + δyð Þ ð8.5.3Þ
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This clearly generates the same equations as r! f + λgð Þ= 0, namely,

2x = −λ

2y = −λ
ð8.5.4Þ

Eliminating λ from the above equations yields x = y, after which the critical
point x = y = 1/2 follows from the constraint x + y = 1. Note that λ is never actually
computed. Standard one-dimensional methods can as well be applied if y = 1 − x is
first substituted into f(x, y).

To find the stationary points of f(x, y) = x2 + y2 − 2xy on the line g(x, y) = x2 +
2y − 4x − 1 = 0, the two partial derivatives with respect to x and y of f(x, y) + λg
(x, y) are set to 0:

2x−2y + λ 2x−4ð Þ = 0
2y−2x + 2λ = 0

ð8.5.5Þ

Summing yields x = 1 for λ 6¼ 0. The constraint g(x, y) = x2 + 2y − 4x − 1 = 0 then
implies y = 2.
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9
PROBABILITY THEORY
AND STATISTICS

In physical systems, inherent uncertainties and fluctuations often produce differing,
unpredictable outcomeswhen ameasurement is repeated. The likelihoodof anoutcome
must then be described probabilistically.

9.1 RANDOM VARIABLES, PROBABILITY DENSITY,
AND DISTRIBUTIONS

A random variable maps the potential outcomes of a system onto differing
numerical values. For example, in a coin toss, a random variable X could map heads
and tails onto the values 1 and 0, respectively, which is expressed as X(H) = 1, X(T) =
0. Similarly, X could represent the square of the number obtained when rolling a dice.
Accompanying the random variable is a probability distribution, p(x) (often denoted
PX if X only adopts discrete values), defined on the set of possible values of the
random variable such that for N repeated measurements,

p X = xð Þ≡ p xð Þ= lim
N!∞

1
N
× number of occurences of X = x

� �
ð9.1.1Þ

Hence, p(x) ≥ 0 and Σx p xð Þ= 1. For a continuous distribution, such as the distribution
of points randomly selected from a line segment, p(x)dx represents the probability of
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observing a value of X between x and x + dx, while the normalization condition

adopts the form
Ð ∞
−∞ p xð Þdx= 1.

9.2 MEAN, VARIANCE, AND STANDARD DEVIATION

The mean value, �f , of a function, f(x), of a random variable is computed from

�f =
X
x

p xð Þf xð Þ =
ð∞
−∞

p xð Þ f xð Þ ð9.2.1Þ

The mean value, �x, of the probability distribution, p(x), is computed by setting f(x) = x
in the above equation. The variance of the distribution

σ2≡ x−�xð Þ2 = x2−2x�x +�x2 = x2 −�x2 ð9.2.2Þ

corresponds to the square of its average departure from the mean. The square root of
the variance

σ =
ffiffiffiffiffiffiffiffiffiffiffiffi
x2 −�x2

p
ð9.2.3Þ

is termed the standard deviation. The relative extent of fluctuations about the mean is
quantified by σ=�x as, e.g., doubling the values in the distribution doubles both the
standard deviation and the mean.

9.3 VARIABLE TRANSFORMATIONS

Given the probability distribution, px(x), of a random variable, X, the probability
density, py(y), of a second random variable Y = f(X) is obtained from

px xð Þdx= px xð Þdx
dy

dy= py y xð Þð Þdy ð9.3.1Þ

Example

If X and Y describe the amount of collected rain in centiliters and milliliters,
respectively, y = 10x. If the probability of rainfall between 1.0 cl and (1.0 + dx) cl
equals px(x = 1)dx, the probability of rainfall between 10.0 ml and (10.0 + dy) ml is
10 times smaller in agreement with py(y = 10) = px(x = 1)dx/dy = p(x)/10.

9.4 MOMENTS AND MOMENT-GENERATING FUNCTION

The nth order moment, xn , of a probability distribution, p(x), is defined as
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xn =
ð∞
−∞

xnp xð Þdx ð9.4.1Þ

A probability distribution function is specified uniquely from all its moments, which
can be obtained from the moment-generating function

M tð Þ =
ð∞
−∞

etxp xð Þdx ð9.4.2Þ

according to (since below only the nth term in the Taylor series expansion yields a
constant after differentiation that does not vanish as t! 0)

xn =
dnM tð Þ
dtn

����
t = 0

= lim
t!0

ð∞
−∞

p xð Þ d
n

dtn
etxð Þdx= lim

t!0

ð∞
−∞

p xð Þ d
n

dtn
1 + tx +

t2x2

2!
+ � � �

� �
dx

ð9.4.3Þ

9.5 MULTIVARIATE PROBABILITY DISTRIBUTIONS,
COVARIANCE, AND CORRELATION

A multivariate probability distribution is specified by several random variables, such
as the probability of simultaneously observing both rain and a temperature above 20�.
If the variables are statistically independent, implying that the probability of rain is
unaffected by temperature,

p x,yð Þ≡ p x and yð Þ = px xð Þpy yð Þ ð9.5.1Þ

Moments then factor into products of the moments of the individual variables, e.g.,
xy = �x�y. On the other hand, if the probability of rain varies with temperature,
Equation (9.5.1) is invalidated and the degree of dependence between the two
variables is quantified by the covariance

cov x,yð Þ = xy−�x�y ð9.5.2Þ

9.6 GAUSSIAN, BINOMIAL, AND POISSON DISTRIBUTIONS

Gaussian Distribution: The outcomes of different physical systems often exhibit sim-
ilar statistical properties described by certain frequently occurring probability distri-
butions. The central limit theorem states that the distribution of the mean values of
repeated sets of statistically independent trials approaches a Gaussian or normal
distribution
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p xð Þ= 1

σ
ffiffiffiffiffi
2π

p e−
x−�xð Þ2
2σ2 ð9.6.1Þ

as the number of measurements in each set becomes large. The moment-generating
function associated with the Gaussian distribution is determined by completing the
square below and subsequently shifting the limits in the integral as in Equations (7.3.8)
and (7.3.9):

M tð Þ = 1

σ
ffiffiffiffiffi
2π

p
ð∞
−∞

etx−
x−�xð Þ2
2σ2 dx=

et�x +
t2 σ2
2

σ
ffiffiffiffiffi
2π

p
ð∞
−∞

e−
x−�x− tσ2ð Þ2

2σ2 dx= et�x +
t2 σ2
2 ð9.6.2Þ

Accordingly,

x =
dM tð Þ
dt

����
t = 0

= �x+ σ2t
� �

et�x+
t2 σ2
2

����
t = 0

=�x ð9.6.3Þ

and, consistent with the definition σ2 = x2 −�x2,

x2 =
d2M tð Þ
dt2

����
t = 0

= σ2 + �x + σ2t
� �2� 	

et�x+
t2 σ2
2

����
t = 0

= σ2 +�x2 ð9.6.4Þ

Binomial Distribution: The binomial distribution expresses the probability of
observing, e.g., m heads after n tosses of a coin for which heads and tails appear with
probabilities p and 1 − p, respectively. Considering events with m heads and (n −m)
tails, for m = 0, only one sequence exists; for m = 1, n separate events yield a single
head; etc., where the probability of these occurrences equals pm(1 − p)n −m. In general,
n different objects can be arranged in n! ways or permutations since n objects can be
placed first, any of the remaining n − 1 objects can be chosen for the second position,
and so on. If, however, the collection consists of several groups of identical objects
with m1,m2,m3,… objects in each group only,

n!

m1!m2!…mn!
≡ n

m1 m2… mn

� �
ð9.6.5Þ

arrangements or combinations of the original n! permutations are distinct where
0! = 1. The denominator of this multinomial coefficient indicates that for each
distinct arrangement of, e.g., two identical black and two white objects such as
(BBWW), 2! × 2! additional permutations would exist if all objects were distinguish-
able, namely, (B1B2W1W2), (B2B1W1W2), (B1B2W2W1), and (B2B1W2W1), as both
white and black objects could then be permuted in 2! additional ways.

For two distinct object types such as heads and tails, Equation (9.6.5) is instead
termed the binomial coefficient and is variously written

88 PROBABILITY THEORY AND STATISTICS



nCm =
n
m

� �
=

n!

m! n−mð Þ! =
n n−1ð Þ n−2ð Þ…
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{m terms

m!
ð9.6.6Þ

while the number of permutations ofm distinct objects out of set of n distinct objects is
denoted

nPm = n n−1ð Þ… n−m+ 1ð Þ ð9.6.7Þ

The probability of obtaining m heads and n −m tails is therefore the probability of a
single ordered sequence multiplied by the number of sequences with the specified
number of heads and tails

p mð Þ = nCm pm 1−pð Þn−m ð9.6.8Þ

termed the binomial distribution.As required, since p + qð Þn =Σn
m = 0 nCm pmqn−m with

q = 1 − p,

Xn
m = 0

p mð Þ= p+ 1−pð Þð Þn = 1 ð9.6.9Þ

Furthermore,

m =
Xn
m = 0

mp mð Þ=
Xn
m= 0

n!

m! n−mð Þ!mp
mqn−m = p

∂

∂p
p + qð Þn = np p + qð Þn−1

���
q= 1−p

= np

m2 =
Xn
m = 0

n!

m! n−mð Þ!m
2pmqn−m = p

∂

∂p
p
∂

∂p
p + qð Þn

0
@

1
A= p

∂

∂p
np p + qð Þn−1
� 	

= p n p + qð Þn−1 + n n−1ð Þp p+ qð Þn−2
h i

q = 1−p

= np+ n2−nð Þp2
ð9.6.10Þ

and the variance

σ2 = x2 −�x2 = np+ n2−n
� �

p2− npð Þ2 = n p−p2
� � ð9.6.11Þ

The associated moment-generating function is given by

M tð Þ = emt =
Xn
m= 0

n!

m! n−mð Þ!e
mtpm 1−pð Þn−m = etp + 1−pð Þð Þn ð9.6.12Þ

from which, e.g.,

89GAUSSIAN, BINOMIAL, AND POISSON DISTRIBUTIONS



m =
∂

∂t
etp + 1−pð Þð Þn

����
t = 0

= n etp + 1−pð Þð Þn−1etp
����
t = 0

= np ð9.6.13Þ

Poisson Distribution: Consider the limit in which the probability of a binary event
approaches zero but the possible number of such events becomes infinite. For
example, if λ decay events on average occur over a time interval T in a certain system,
if T is divided intoN = T/Δt subintervals, the probability of a decay in each subinterval
is λ/N so that the probability of m decays in the time T equals

p mð Þ= NCm

λ

N

� �m

1−
λ

N

� �N−m

=
N N−1ð Þ N−2ð Þ…
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{m terms

m!

λ

N

� �m

1−
λ

N

� �N−m

ð9.6.14Þ

The Δt! 0, N!∞ limit of the above equation generates the Poisson distribution

p mð Þ≈ lim
N!∞

Nm

m!

λ

N

� �m

1−
λ

N

� �N−m

≈e−λ
λm

m!
ð9.6.15Þ

From the Taylor series expansion of the exponential function,
X∞

m = 0
p mð Þ= 1 while

m = e−λ
X∞
m = 0

mλm

m!
= e−λ

X∞
m = 1

λm

m−1ð Þ!= λe
−λ
X∞
m = 0

λm

m!
= λ

m2 = e−λ
X∞
m = 1

mλm

m−1ð Þ!= e
−λ
X∞
m= 1

m−1ð Þ + 1½ �λm
m−1ð Þ!

= e−λ
X∞
m= 2

λm

m−2ð Þ!+ e
−λ
X∞
m = 1

λm

m−1ð Þ!= e
−λ λ2eλ
� �

+ e−λ λeλ
� �

= λ2 + λ

ð9.6.16Þ

Hence, the variance, σ2 =m2 − �mð Þ2, of the Poisson distribution equals its mean, λ.
These results can again be obtained from the moment-generating function

etm = e−λ
X∞
m= 0

etmλm

m!
= e−λ

X∞
m= 0

etλð Þm
m!

= eλ et −1ð Þ ð9.6.17Þ

since, e.g.,

m =
∂

∂t
eλ et −1ð Þ

����
t = 0

= eλ et −1ð Þλet
����
t = 0

= λ ð9.6.18Þ

and
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m2 =
∂2

∂t2
eλ et −1ð Þ

����
t = 0

= eλ et −1ð Þ λ2e2t + λet
� �����

t = 0

= λ2 + λ ð9.6.19Þ

9.7 LEAST SQUARES REGRESSION

In contrast with the direct problem of determining the probability distribution implied
by a physical model, statistics addresses the inverse problem of determining the prob-
ability that a particular model reproduces a set ofmeasurement data and then finding an
exact or optimal approximate physical model for the data. In a simple one-dimensional
implementation, given a set of m measured data points (xi, yi), i = 1, 2,…,m, least
squares regression estimates the optimal coefficients al for a model consisting of a
linear combination of n functions:

~y xð Þ=
Xn
l= 1

alfl xð Þ ð9.7.1Þ

With the assumption of identical measurement accuracy at each data point, mini-
mizing the least mean squared error

F a1,a2,…,anð Þ =
Xm
i= 1

~y xið Þ−yið Þ2 ð9.7.2Þ

of the predicted value ~y xið Þ from the data with respect to each of the n model
parameters ai requires

∂F

∂aj
= 0 ð9.7.3Þ

for j = 1, 2,…, n. This generates a system of n equations:

2
Xm
i= 1

~y xið Þ−yið Þfj xið Þ= 0 ð9.7.4Þ

Substituting Equation (9.7.1) for ~y xið Þ,

Xm
i= 1

Xn
l= 1

al fl xið Þ−yi
 !

fj xið Þ = 0 ð9.7.5Þ

results in a matrix equation Ma = b for the al with
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Xn
l= 1

Xm
i= 1

fj xið Þfl xið Þ
 !

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mjl

al =
Xm
i= 1

yifj xið Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

bj

ð9.7.6Þ

9.8 ERROR PROPAGATION

Every measurement is subject to error. Systematic errors are associated with inherent,
reproducible features of the measurement device and can therefore be corrected if their
origin is understood. Random errors, however, result from intrinsic measurement inac-
curacy and can therefore only be mitigated through multiple observations followed by
statistical data processing. A repeated measurement that exhibits a large systematic
error but small random error possesses a high degree of precision but a low accuracy
as the results are closely grouped around an imprecise value (additionally, if the mean
value of the measurements yields a highly accurate result while the standard deviation
around the mean is large, the measurements are said to possess a good trueness,
even though the precision is poor). Errors are typically specified as μ ± σ, where
μ and σ represent the mean value and the standard deviation of the measured quantity.

Suppose a result is described by a function f x
!� � of a collection of variables x! that

are measured in a series of identical experiments. Denoting an average over all
measurements by an overbar, if the observed mean and standard deviation of the
jth variable are �xj and σj, the variance of f x!

� �
is given by

X
j

f xj
� �

− f �xj
� �� �2≈X

j f x
!
j

� �
+
∂f

∂xj
xj−�xj
� �

− f �xj
� �� �2

=
X
j

∂f

∂xj

� �2
σ2j ð9.8.1Þ

Examples

If f x
!� � equals the sum of the N variables, the root-mean-squared (r.m.s.) error of f

is σf =
X

j
σ2j

� 	1=2
. Alternatively, for

f x
!� �= aY

j

x
pj
j ð9.8.2Þ

the “logarithmic derivative” yields

1
f

∂f

∂xj
=
pj
xj

ð9.8.3Þ

from the relative error in f, which follows from Equation (9.8.1)

σf
f
=
X
j

pjσj
xj

� �2
" #1

2

ð9.8.4Þ
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9.9 NUMERICAL MODELS

Stochastic (probabilistic) processes are simulated by random number generators.
In Octave, rand returns a random number between 0 and 1 (the function randn
similarly returns a random number selected from a Gaussian distribution with �x = 0
and σ = 1). A single coin toss in which 1 is assigned to heads and 0 to tails is therefore
simulated with outcome = floor ( 2 ∗ rand );. The following program
performs numberOfRealizations experiments in each of which a coin is
tossed numberOfThrows times and compares the resulting histogram (discrete
distribution) of the number of heads to the binomial coefficient:

numberOfThrows = 30;
numberOfRealizations = 5000;
histogram = zeros( 1, numberOfThrows + 1 );
for loopOuter = 1 : numberOfRealizations

outcome = 0;
for loopInner = 1 : numberOfThrows

outcome = outcome + floor ( 2 ∗ rand );
end
histogram( outcome + 1 ) = histogram( outcome + 1 ) + 1;

end

binomialCoefficients = binopdf( [ 0 : numberOfThrows ],…
numberOfThrows, 0.5 );

histogram = histogram / max( sum( histogram ), 1 );

xAxis = 0 : numberOfThrows;
plot( xAxis, histogram, xAxis, binomialCoefficients );
drawnow

93NUMERICAL MODELS



10
COMPLEX ANALYSIS

Limiting operations can be applied to complex-valued functions with complex
arguments as well as to real functions of a real argument. Performing calculations
on functions extended to the complex domain and subsequently specializing to the
real limit often results in simplifications relative to the identical calculations on the
real functions.

10.1 FUNCTIONS OF A COMPLEX VARIABLE

A function f (x) of a single real variable is transformed into a function of a complex var-

iable by replacing and n an arbitary integer x by z = x+ iy=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
exp i θ + 2πnð Þð Þ≡

rexp i θ + 2πnð Þð Þ with θ = arctan(y/x) in accordance with Figure 4.6. The function is
then generally complex and can be multiple valued.
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Example

While f (z) = z2 = (x + iy)(x + iy) = x2 + y2 + 2ixy is single valued, f xð Þ= ffiffiffi
x

p
is double valued as

f xð Þ= z1=2 = x + iyð Þ1=2 = rei θ + 2πnð Þ
� �1=2

= r1=2ei
θ
2 + πnð Þ = r1=2eiθ2 −1ð Þn ð10.1.1Þ

Similarly, the logarithm function possesses infinitely many complex values for
each real value:

ln zð Þ = ln rei θ + 2nπð Þ
� �

= lnr + i θ + 2nπð Þ ð10.1.2Þ

The single-valued section of f (z) typically specified by − π < arg( f (z)) < π is termed
the principal sheet or branch, with the values acquired by f(z) on the principal branch
termed the principal values. For the square root and logarithm functions, the principal
branch corresponds to −2π < arg(z) < 2π and − π < arg(z) < π, respectively.

10.2 DERIVATIVES, ANALYTICITY, AND
THE CAUCHY–RIEMANN RELATIONS

The derivative of a function of complex arguments can be defined identically to the
real derivative

df zð Þ
dz

≡ lim
Δz!0

f z +Δzð Þ− f zð Þ
Δz

ð10.2.1Þ

However, Equation (10.2.1) must then not depend on the manner in which Δx and Δy
approach zero in Δz =Δx + iΔy. This analytic condition holds if f(z) is nonsingular as
Δz!0 and depends only on z, so that ∂f/∂z∗ = 0. As x and iy then appear symmetrically
in the function argument,

∂f x+ iyð Þ
∂x

=
∂f x + iyð Þ
∂ iyð Þ ð10.2.2Þ

Writing f (z) = u(z) + iv(z), where u(z) and v(z) are real functions,

∂u x + iyð Þ
∂x

+ i
∂v x + iyð Þ

∂x
= − i

∂u x + iyð Þ
∂y

+
∂v x + iyð Þ

∂y
ð10.2.3Þ

Equating real and imaginary parts of the above expression yields the Cauchy–Riemann
relations
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∂u x + iyð Þ
∂x

=
∂v x + iyð Þ

∂y

∂u x + iyð Þ
∂y

= −
∂v x+ iyð Þ

∂x

ð10.2.4Þ

Example

The analyticity of u + iv = x2 + y2 + 2ixy, which originates from f(z) = z2, can be
established by verifying that the real and imaginary parts of the function u and
v satisfy Equation (10.2.4). Nonanalytic functions such as zj j = ffiffiffiffiffiffi

zz*
p

or z + z* con-
tain both z and z* as arguments and violate Equation (10.2.4).

Since the derivative of a complex function is defined identically to the real derivative,
the chain and product rules apply. Further, the Cauchy–Riemann relations together
with ∂2/∂x∂y = ∂2/∂y∂x yield

∂

∂x

∂u

∂x

� �
=

∂

∂x

∂v

∂y

� �
=

∂

∂y

∂v

∂x

� �
= −

∂

∂y

∂u

∂y

� �
ð10.2.5Þ

Hence, both u and v and hence f (z) satisfy the two-dimensional Laplace equation

∂2

∂x2
+

∂2

∂y2

 !
u
v

� �
= 0 ð10.2.6Þ

10.3 CONFORMAL MAPPING

An analytic function f (z) “conformally” maps two lines in the complex plane
intersecting at a given angle into two curves that intersect at the same angle. If the
two lines are expressed parametrically as

z1 tð Þ = u1 tð Þ + iv1 tð Þ
z2 tð Þ = u2 tð Þ + iv2 tð Þ

ð10.3.1Þ

their angles of inclination in the complex plane are determined by (since arg z =
arctan (v/u))

tan−1 dv

du

� �
= tan−1 dv=dt

du=dt

� �
= arg

du

dt
+ i

dv

dt

� �
= arg

dz

dt

� �
ð10.3.2Þ
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At the point of intersection t0, the angle between these lines is therefore arg (dz1(t0)/dt) −
arg (dz2(t0)/dt), while the angle between the corresponding curves f(z1(t)) and f(z2(t)) is

arg
df z1 tð Þð Þ

dt

� �
− arg

df z2 tð Þð Þ
dt

� �� �
t0

= arg
df z1 tð Þð Þ

dz1

dz1
dt

� �
− arg

df z2 tð Þð Þ
dz2

dz2
dt

� �� �
t0

ð10.3.3Þ

Since, however, df =dzjt0 is the same for both paths while for any two complex
quantities z1 and z2

arg z1z2ð Þ= arg r1e
iθ1r2e

iθ2
	 


= θ1 + θ2 = arg z1ð Þ+ arg z2ð Þ ð10.3.4Þ

the angle between the lines is preserved.

10.4 CAUCHY’S THEOREM AND TAYLOR AND LAURENT SERIES

Since an analytic function f (z) depends exclusively on z = x + iy, the variations of its
real and imaginary parts over a path, z(t), in the complex plane are coupled. If z(t) only
passes through points where F(z) is analytic, the integral of the derivative of F(z) is
given by the difference of F(z) at its two endpoints since

ðt2
t1

dF z tð Þð Þ
dt

dt =
ðt2
t1

dF z tð Þð Þ
dz

dz

dt
dt =

ðz t2ð Þ

z t1ð Þ

dF zð Þ
dz

dz=
ðF z t2ð Þð Þ

F z t1ð Þð Þ

dF =F z t2ð Þð Þ−F z t1ð Þð Þ

ð10.4.1Þ

Further, if a function f (z) = u(z) + iv(z) is analytic in a connected domain D (a domain

without any points or lines where f (z) is singular or otherwise nonanalytic) and C is

any contour wholly within D,

ð

↺

C
f zð Þdz = 0 ð10.4.2Þ

since applying Stokes’ theorem in a space defined by the two-dimensional (x, y)
complex plane together with a third z-dimension perpendicular to this plane so that

dS
!
below is parallel to êz,
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ð

↺

C
f zð Þdz=

ð

↺

C
u + ivð Þ dx+ idyð Þ =

ð

↺

C
udx−vdyð Þ + i vdx+ udyð Þ

=
ð

↺

C
u, −v,0ð Þ �d l!+ i

ð

↺

C
v,u,0ð Þ �d l!

=
ð ð

S
r! × u, −v,0ð Þ
� �

�dS! + i
ð ð

S
r! × v,u,0ð Þ
� �

�dS!

= −

ð ð
S

∂u

∂y
+
∂v

∂x

8<
:

9=
;dxdy+ i

ð ð
S

∂u

∂x
−
∂v

∂y

8<
:

9=
;dxdy= 0

ð10.4.3Þ

where the Cauchy–Riemann relations are applied in the last step.
If f (z) = 1/z, termed a first-order pole, that is nonanalytic at z = 0 is integrated

counterclockwise around the origin over a circle of radius, a, so that z(θ) = aeiθ,
dz(θ) = iaeiθdθ,

ð
↺

C

1
z
dz=

ð
↺

C

1
z θð Þ

dz θð Þ
dθ

dθ =
ð2π
0

i .aeiθ

.aeiθ
dθ = 2πi ð10.4.4Þ

Note that an integration contour from a lower limit a to an upper limit b is denoted by

an arrow from a to b: ðb
a
f xð Þdx
a�!b

ð10.4.5Þ

Thus, when integrating in the counterclockwise direction over C in Equation (10.4.4),
the lower limit corresponds to θ = 0, while the upper limit is θ = 2π. Additionally,

integrals around all singularities of the form 1/zn vanish for n 6¼ 1 (Eq. 6.1.18 with

n! 1 can be employed in the last manipulation below):

ð

↺

C

1
zn
dz =

ð

↺

C

1
zn θð Þ

dz θð Þ
dθ

dθ =
ð2π
0

iaeiθ

aneinθ
dθ

= a1−n
ð2π
0
iei 1−nð Þθdθ =

a1−nei 1−nð Þθ

1−n

������
2π

0

= 2πiδn1 ð10.4.6Þ

Cauchy’s theorem accordingly states that if f (z) is analytic inside a contour C,

ð

↺

C

f zð Þ
z−z0

dz=
0 if C does not enclose z0
2πif z0ð Þ if C encloses z0

�
ð10.4.7Þ
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That is, if C does not enclose z0, the integral is zero from Equation (10.4.2). However,
if C encloses z0, the integral is evaluated by considering a modified contour including
two infinitesimally displaced, oppositely directed line segments extending from C to
an inner circle infinitesimally close to and enclosing z0 as shown in Figure 10.1

The integrals over the two straight line segments are oppositely directed and cancel.
Since themodified contour avoids enclosing the singularity at z0, the counterclockwise
integral over its outer loop and the clockwise integral over the infinitesimal circular
contour—which is the negative of the counterclockwise integral—surrounding this
singular point sum to zero. Approximating the analytic function f (z) in the integral
around the infinitesimal circle by its value at z0, Equation (10.4.7) follows from
Equation (10.4.4).

Differentiating both sides of Equation (10.4.7) n times with respect to z0 yields, ifC
encloses z0,

f n z0ð Þ≡ ∂nf z0ð Þ
∂zn0

=
∂n

∂zn0

1
2πi

ð

↺

C

f zð Þ
z−z0

dz =
n!

2πi

ð

↺

C

f zð Þ
z−z0ð Þn + 1dz ð10.4.8Þ

Since z0 can be anywhere inside C, a function that is analytic within C is infinitely
differentiable in this region as its derivatives can be evaluated through the above
formula.

If f (z) is instead analytic in an annular (ring-shaped) region about z0, the integral

ð

↺

C

f zð Þ
z− z0 + hð Þdz ð10.4.9Þ

is considered in place of Equation (10.4.7), where z0 + h lies within the annulus and
the contourC contains two infinitesimally displaced oppositely directed line segments

C

x

iy

z0

FIGURE 10.1 Contour for Cauchy’s theorem.
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that connect the contour C1 along the outer boundary of the region to a contour C2

along the inner region boundary as displayed in Figure 10.2. For a function f (z) ana-
lytic within C, the integral over C yields 2πif (z0 + h) from Cauchy’s theorem. How-
ever, this equals the sum of the counterclockwise integral over the outer contour and
the clockwise integral over the inner contour as the contributions from the lines con-
necting the singularity with the outer contour are again oppositely directed and there-
fore cancel. Since replacing the clockwise integral over the inner contour changes by a
counterclockwise integral reverses the sign of the term,

f z0 + hð Þ = 1
2πi

ð

↺

C1

f zð Þ
z− z0−h|fflfflfflffl{zfflfflfflffl}

z−z0j j> h

dz−
1
2πi

ð

↺

C2

f zð Þ
z−z0 −h|fflfflfflffl{zfflfflfflffl}

z−z0j j< h

dz ð10.4.10Þ

Writing the first and second denominator as (z − z0)
− 1(1 − h/(z − z0))

− 1 and (−h)− 1(1 −
(z − z0)/h)

− 1, respectively, and subsequently expanding in convergent power
series yield

f z0 + hð Þ = 1
2πi

X∞
n = 0

hn
ð

↺

C1

f z0ð Þ z0−z0ð Þn + 1
z−z0ð Þn+ 1 dz +

X∞
n= 1

1
hn

ð

↺

C2

z−z0ð Þn−1f zð Þdz
 !

ð10.4.11Þ
This Laurent series expansion possesses the general form after substituting z0 + h = z

f zð Þ=
X∞

n= −∞

1
2πi

ð

↺

C1

f z0ð Þ
z0−z00
	 
n + 1dz

" #
z−z0ð Þn =

X∞
n = −∞

an z−z0ð Þn ð10.4.12Þ

x

iy

C2

C1

z0

z0+ h

FIGURE 10.2 Laurent series contour.
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If all an = 0 for n < p with p < 0, f (z) possesses a pth-order pole at z0. If f (z) is
nonsingular at z0, the annular region can be assigned a zero inner radius and
an = 0 for n < 0, yielding a Taylor series (note that the coefficient of hn is f n(z0)
from Eq. (10.4.8)).

Example

A Laurent series with a first-order pole at z = 0 that is analytic in the infinite ring
|z| > 0 is

sinz
z

=
1
z
−
z

3!
+
z3

5!
+ � � � ð10.4.13Þ

That a function is uniquely defined by its Laurent series leads to the technique of
analytic continuation. If a function f1 that is analytic in a region R and a second
function f2 that is analytic in a region S that partially overlaps R agree in the over-
lapping region S \ R, the functions are identical since all terms in their series
expansions in S \ R are equal.

10.5 RESIDUE THEOREM

Integrals in the complex domain are often simply evaluated by integrating over a
closed contour and applying Cauchy’s theorem. Accordingly, integrals over an open
contour Copen are often transformed into integrals over closed contours by closing the
contour over a path on which the integral either vanishes or is simply related to its
value over Copen. If the integration region contains branch cuts, associated with edges
of principal sheets, additional issues arise as the contour must be deformed to avoid
these edges.

An integral of a function f (z) over a closed contour C enclosing N singularities of
f (z) can be recast as the sum of a singularity-free integral formed by joining C through
infinitesimally displaced, oppositely directed line segments to N clockwise integrals
around the singularities as in Figure 10.3. Therefore, the difference of the integral
over C and the sum of the counterclockwise integrals over zi equal zero. Since f (z)
is analytic within C except at zi, it possesses a Laurent series expansion near each
zi. Only the first-order pole term of the form b− 1/(z − zi) yields a nonzero contribution
to the integral of each series around the encompassing infinitesimal circle according to
Equation (10.4.6). The integral overC thus equals 2πi times the sum of the coefficients

of all the first-order poles within C.
From the preceding paragraph, if the function possesses anmth-order pole at z = z0,

in the vicinity of this point,

f zð Þ = b−m z−z0ð Þ−m + b−m + 1 z−z0ð Þ−m+ 1 +…+ b−1 z−z0ð Þ−1 + b0 +… ð10.5.1Þ
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so that

z−z0ð Þmf zð Þ= b−1 + b−m+ 1 z−z0ð Þ+…+ b−1 z−z0ð Þm−1 + b0 z−z0ð Þm +… ð10.5.2Þ

only the coefficient or residue of the first-order pole term given by

b−1 =
1

m−1ð Þ! limz!z0

dm−1

dzm−1
z−z0ð Þmf zð Þ

� �
ð10.5.3Þ

contributes to the integral around C.

Examples

1. The residue of (z + 1)2/(z − 1)2 at z = 1 is from Equation (10.5.3):

lim
z!1

d

dz
z−1ð Þ2 z+ 1

z−1

� �
2

� �
= lim

z!1
2 z + 1ð Þ= 4 ð10.5.4Þ

as can be obtained directly by expanding about the point z = 1 after writing z = 1 + ε

z + 1
z−1

� �
2

=
1 + ε + 1

ε

� �
2

=
4 + 4ε + ε2

ε2
=
4
ε2

+
4
ε
+ 1 ð10.5.5Þ

The residue, which is the coefficient of 1/(z − 1) = 1/ε, again evaluates to 4.

x

iy

z2

z1

z0

C

FIGURE 10.3 Contour integration enclosing several singularities.
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2. An integral over an open contour that can be solved with the method of resi-
dues is

Ik að Þ=
ð∞
−∞

eikx

x− ia
dx ð10.5.6Þ

for k > 0, which possesses a single first-order pole in the integrand at x = ia. The
contour from −∞ to∞ can be completed by a half circle in the positive half plane
that does not affect the integral since

lim
R!∞

ðπ

0

eikR cosθ + isinθð Þ
R

Rdθ < lim
R!∞

ðπ

0

e−kRsinθdθ = 0 ð10.5.7Þ

Over the closed contour, for a > 0, Ik (a) equals 2πi times the residue at ia. On the
other hand, if a < 0, no singularity exists within the contour and Ik = 0. For a = 0,
the singularity falls on the integration contour. Heuristically, since the contour
encloses only the upper half of the singularity, this Cauchy principal value or
principal part integration over the real axis, defined as the integral excluding
the region in the immediate vicinity of the singularity, yields half the contribution
(1/2)(2πi) from a fully enclosed singularity. That is, after replacing 1

z by an equiv-
alent real limit, the integral can be written as, where the contour must be completed
in the upper half plane and hence only the second term in the integral with a pole in
this region contributes,

P

ð∞
−∞

eikz

z
dz = lim

ε!0

1
2

ð∞
−∞

eikz
1

z+ iε
+

1
z− iε

� �
dz = πi ð10.5.8Þ

Combining the previous results, Ik(a) = 2πie− kaθ(a), where θ(a) denotes the
Heaviside step function that equals 1, 0, and ½ for a > 0, a < 0, and a = 0,
respectively. A third analysis of principal value integration is presented in
Section 10.6.

3. Symmetries of the integrand can sometimes be employed to complete an open
contour as in

I =
ð∞
−∞

ecx

1 + ex
dx ð10.5.9Þ

with 0 < c < 1. The contour can be closed by the infinite rectangle of Figure 10.4,
where the upper segment is the line Im(z) = 2πi and the right and left sides of the
graph represent x = ±∞, since

a. The integrals along the two vertical sections at x = ±∞ vanish since e(c − 1)z! 0 at
z =∞ + iy and ecz! 0 at z = −∞ + iy.
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b. Along the upper line of the contour, ec(z + 2πi) = e2πciez and 1 + ez + 2πi = 1 + ez so
that (as a result of the reversed direction of integration) I! − e2πciI.

c. C contains a single pole at z = iπ for which ez = −1. Near the pole,

eπci

1 + eιπ + z− iπð Þ =
eπci

1 + −1ð Þ 1 + z− iπð Þ+ z− iπð Þ2=2!+…
� �

≈ −
eπci

z− iπ

ð10.5.10Þ

Hence, the residue is − eπci so that

I−e2πciI = −2πieπci ð10.5.11Þ
and finally,

I =
−2πieπci

1−e2πci
=

−2πi
e−πci−eπci

=
π

sinπc
ð10.5.12Þ

If f (z) contains p poles of order n and z zeros of order m inside a contour C,

1
2πi

ð

↺

C

f 0 zð Þ
f zð Þ dz = zm−pn ð10.5.13Þ

In particular, at a zero of order m, f (z) = bm(z − z0)
m + bm + 1(z − z0)

m + 1 +… so that as
z − z0! 0, the contribution from such a singularity is

−10 −5 0 5 10

0

5

10

15

FIGURE 10.4 Integration contour.
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1
2πi

ð

↺

C

f 0 zð Þ
f zð Þ dz =

1
2πi

lim
z−z0!0

ð

↺

C

mbm z−z0ð Þm−1 + m+ 1ð Þbm+ 1 z−z0ð Þm +…

bm z−z0ð Þm + bm+ 1 z−z0ð Þm+ 1 +…
dz

=
1
2πi

ð

↺

C

m

z−z0
dz=m ð10.5.14Þ

At a pole of order n, f (z) = b− n(z − z0)
− n + b− n + 1(z − z0)

− n + 1 +…, replacing m by
− n above.

10.6 DISPERSION RELATIONS

If f (z) = u(z) + iv(z) is analytic and vanishes faster than 1=jzj as jzj !∞ in the upper
half plane,

1
2π

ð
↺

C

f z0ð Þ
z0−x

dz0 = 0 ð10.6.1Þ

where C is taken along the real axis but avoids the pole at z0 = x by, e.g., traversing a
half circle of infinitesimal radius above the singularity in the clockwise direction as
illustrated in Figure 10.5. The contribution to the integral over this section is − πif(x),
namely, half the result obtained by fully encircling the singularity with an additional
negative sign associated with the contour direction.

As the integral vanishes over the infinite semicircle, its principal part,P, along the real
axis that arises from the contribution away from the pole, Equation (10.6.1) becomes

P

ð∞
−∞

u x0ð Þ + iv x0ð Þ
x0−x

dx0 = π iu xð Þ−v xð Þð Þ ð10.6.2Þ

Equating real and imaginary terms leads to the dispersion relations

u xð Þ= 1
π
P

ð∞
−∞

v x0ð Þ
x0−x

dx0

v xð Þ= −
1
π
P

ð∞
−∞

u x0ð Þ
x0−x

dx0
ð10.6.3Þ

x

iy

C

xʹ

FIGURE 10.5 Contour for principal part integration.

105DISPERSION RELATIONS



10.7 METHOD OF STEEPEST DECENT

Contour integrals over exponential functions can often be approximated by integrals
in the complex plane over Gaussian functions. The contour is then deformed to pass
through saddle points along directions of constant phase.

Example

For the gamma function of Equation (6.2.5)

Γ n+ 1ð Þ = n!=
ð∞
0
e−xxndx=

ð∞
0
e−x + nlnxdx ð10.7.1Þ

the maximum value of the integrand occurs at

d

dx
−x+ n lnxð Þ = −1 +

n

x
= 0 ð10.7.2Þ

Expanding the exponent in a power series about the maximum x = n yields up to
second order

ð∞
0
e−x + nlnxdx≈

ð∞
0
e−n+ nlnn +

x−nð Þ2
2! − n

x2

	 
��
x= ndx= e−n+ nlnn

ð∞
0
e−

1
n
x−nð Þ2
2! dx

ð10.7.3Þ

Integrating along the real axis insures that the phase is constant over the contour
and that the integral adopts a Gaussian form. That is, the complex function

e−c x−nð Þ2 = e−cz
02
with z0 = z − n possesses a maximum along real z0 but a minimum

along imaginary z0 about z0 = 0. Thus, the integrand describes a saddle point in the
complex plane; such that for the real axis contour the result originates from a small
region of zero phase around the extremum. Since the integrand is small at the x = 0
lower limit for large n, this limit can further be replaced by −∞. Substituting
x0 = x−nð Þ= ffiffiffiffiffi

2n
p

for which dx0 = dx=
ffiffiffiffiffi
2n

p
yields Stirling’s approximation

n!=
ffiffiffiffiffiffiffiffi
2πn

p
e−n+ nlnn =

ffiffiffiffiffiffiffiffi
2πn

p
nne−n ð10.7.4Þ

which is generally cited in its lowest order form ln n !≈ n ln n − n.

The method of steepest decent can be applied to integrals over functions for which
the path of maximum negative curvature is oriented in any complex direction since a
closed contour can be deformed within any singularity-free region without altering the
integral. In practical calculations, integrals of the form

I tð Þ =
ð
C
R zð ÞetI zð Þdz ð10.7.5Þ
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are performed by applying the formula

I tð Þ=
XM
m= 1

I tð Þ=
ffiffiffiffiffi
2π

p XM
m= 1

t
∂2I zmð Þ
∂z2

����
����
−1
2

R zmð ÞetI zmð Þ+ θm ð10.7.6Þ

which results from Gaussian integration over a line z= zm + teiθm along the direction of
maximum negative curvature through each saddle point zm (m = 1, 2,…,M).
Equation (10.7.6) reproduces Equation (10.7.5) by setting t = n, R = 1, I = −x/n + ln x,
θ = 0 and z1 = n.
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11
DIFFERENTIAL EQUATIONS

As noted earlier, differentiation is a direct operation that yields f(x) from
Dy(x) = f(x), with D = d/dx, while integration solves the inverse problem of deter-
mining y(x) given f(x). This chapter considers inverse problems for more involved
differential operators.

11.1 LINEARITY, SUPERPOSITION, AND INITIAL
AND BOUNDARY VALUES

A differential equation of order m and degree n contains derivatives of up to order

m as well as powers of derivatives such as (Dy)2 up to the nth degree. The coefficients
of the derivative terms are in general functions of the independent and dependent
variables x and y. A linear differential equation Ly(x) = f(x) is of first degree with coef-
ficients that are independent of y so that L obeys

L ayð Þ = aL yð Þ
L y1 + y2ð Þ= L y1ð Þ+ L y2ð Þ ð11.1.1Þ

The first property implies that the form of a solution is independent of its amplitude,
while the second implies that any sum or superposition of individual solutions is
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a solution. The form of an inhomogeneous linear kth-order differential equation is
given by

Xk
n= 0

cn xð ÞDny = f xð Þ ð11.1.2Þ

while f(x) = 0 for a homogeneous equation.
The solution of an inhomogeneous differential equation is a superposition of a

particular solution of Equation (11.1.2), with a solution of the corresponding homo-
geneous equation. The homogeneous solution, which does not affect the right-hand
side of the above equation, is then uniquely determined by the boundary conditions.
That is, an n:th-order differential equation provides a single relationship among y(x)
and its first n derivatives at each point x leaving n degrees of freedom undetermined.
A unique solution is therefore obtained by imposing n conditions at either the initial,
final, or boundary values of x.

Example

The solution of Dy = cos x is the sum of the unique inhomogeneous solution,
yparticular = sin x, and the nonunique homogeneous solution of Dy = 0, ygeneral = c.
A unique solution is obtained by specifying the value of y(x) at some initial or final
point y(a) = y0.

11.2 NUMERICAL SOLUTIONS

A first-order differential equation of the form

Dy= y y−2:5ð Þ ð11.2.1Þ
relates the slope of y(x) to a function of its amplitude. The following Octave function
file, derpol.m, displays the slope field, which displays the slope, Dy(x), as a vector

dx,dyð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxð Þ2 + dyð Þ2

q
at each point on a grid of (x, y) values:

function[xSlopeProjection,ySlopeProjection]=derpol(x,y)
mySlope = y .* ( y – 2.5 );
xSlopeProjection = 1 ./ sqrt( 1 + mySlope.^2 );
ySlopeProjection = mySlope ./ sqrt( 1 + mySlope.^2 );

endfunction

The calling program is placed in a second file, vecfield.m,

[ xf, yf ] = meshgrid( −5 : 0.5 : 5, −5 : 0.5 : 5 );
[ xProjection, yProjection ] = derpol( xf, yf );
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quiver( xf, yf, xProjection, yProjection );
print( “quiver”, “-demf” );

and is run after navigating to the directory containing both files by typing vecfield
at the Octave command prompt. The result (Fig. 11.1) clarifies the dependence of the
solution on the initial conditions; for an initial value of y between −∞ and 2.5, the
solution evolves along the arrows to the stable fixed point y = 0 from which any small
deviation of the solution diminishes with increasing x. The value y = 2.5 represents an
unstable fixed point for which an infinitesimal perturbation instead grows with x.

Equation (11.2.1) can be solved numerically with Euler’s method by applying the
discrete forward difference representation of the derivative (Equation (6.1.1)). This
corresponds to numerical integration and requires a single initial condition

D+ y xð Þ≡ y x+Δxð Þ−y xð Þ
Δx

= y xð Þ y xð Þ−2:5ð Þ

y x +Δxð Þ= y xð Þ 1 + y xð Þ−2:5ð ÞΔxð Þ
ð11.2.2Þ

as is implemented numerically by

y(1) = 1;
numberOfSteps = 100;
deltaX = 0.1;
xAxis = deltaX * 1 : numberOfSteps;
for loop = 2 : numberOfSteps
y(loop) = y(loop – 1) * ( 1 + ( y(loop – 1) – 2.5 ) * deltaX );

end
plot( xAxis, y )
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FIGURE 11.1 Slope field.
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Second- or higher-order differential equations can be written as a system of first-order
equations. For

D2y = −cDy−ky ð11.2.3Þ

introducing the “velocity” v =Dy yields

Dy= v

Dv= −cv−ky
ð11.2.4Þ

or equivalently, in matrix form,

D
y
v

� �
=

0 1
−k −c

� �
y
v

� �
ð11.2.5Þ

Subsequently, from the forward finite difference representation of the derivative
operator,

y x+Δxð Þ = y xð Þ+ vΔx

v x+Δxð Þ = v xð Þ+ −cv xð Þ−ky xð Þð ÞΔx
ð11.2.6Þ

which is implemented after specifying initial conditions for y and v as follows:

y(1) = 1;
v(1) = 0;
c = 0.1;
k = 0.5;
numberOfSteps = 100;
deltaX = 0.1;
for loop = 2 : numberOfSteps
y(loop) = y(loop – 1) + v(loop – 1) * deltaX;
v(loop) = v(loop – 1) + ( –c * v(loop – 1) – k * y(loop – 1) )

* deltaX;…
end
plot( y, v )
figure( 2 )
plot( y )

The first figure corresponds to the phase space plot of the velocity as a function
of position, while the second displays the solution y. Since this numerical solution
procedure generates unphysical divergences in energy-conserving systems, each
calculation should be verified by examining the dependence of the result on the
magnitude of Δx.
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11.3 FIRST-ORDER DIFFERENTIAL EQUATIONS

Although even if f (x, y) is a function only of x in the general first-order differential
equation

Dy = f x,yð Þ ð11.3.1Þ
the integral expression for y(x) can be analytically intractable, for certain f (x, y),
straightforward solution methods exist. A function f (x, y) of the form X(x)Y(y) yields

a separable equation that can in many cases be solved by integrating according to

ðy xð Þ

y x0ð Þ

dy

Y yð Þ=
ðx
x0

X xð Þdx ð11.3.2Þ

Example

For f(x, y) = yx2,
ð
1
y
dx=

ð
x2dy

log y =
x3

3
+ c

y = ecex
3=3 = c0ex

3=3

ð11.3.3Þ

The constant c0 is determined from the initial conditions.

When f(x, y) is not a product X(x)Y(y), Equation (11.3.1) may still be separable after
appropriate transformations. Unfortunately, these effectively constitute more involved
versions of the variable substitutions employed in integration and are therefore often
not apparent. If, however, f(x, y) can be expressed as a ratio, −m(x, y)/n(x, y), such that
Equation (11.3.1) becomes

m x,yð Þdx+ n x,yð Þdy= 0 ð11.3.4Þ

where additionally m(x, y) and n(x, y) are both homogeneous of degree p, e.g.,
n(αx, αy) = αpn(x, y), then

m x,yð Þdx+ n x,yð Þdy= xn m
x

x
,
y

x

� �
dx+ n

x

x
,
y

x

� �
dy

� �
= 0 ð11.3.5Þ

Since m and n on the right-hand side of Equation (11.3.5) then only depend on x
through the ratio w = y/x for which dy = wdx + xdw, the separable equation

m wð Þdx+ n wð Þ wdx + xdwð Þ= m wð Þ + n wð Þwð Þdx+ n wð Þxdw = 0 ð11.3.6Þ

results.
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Alternatively, if a function k(x, y) can be identified in Equation (11.3.4) such that

∂k

∂x
=m x,yð Þ

∂k

∂y
= n x,yð Þ

ð11.3.7Þ

then

0 =m x,yð Þdy+ n x,yð Þdx

=
∂k x,yð Þ

∂y
dy+

∂k x,yð Þ
∂x

dx

= dk x,yð Þ

ð11.3.8Þ

which yields

k x,yð Þ= c ð11.3.9Þ

From Equation (11.3.7), such differential equations, which are termed exact, must
fulfill the condition

∂m x,yð Þ
∂y

=
∂2k x,yð Þ
∂y∂x

=
∂2k x,yð Þ
∂x∂y

=
∂n x,yð Þ

∂x
ð11.3.10Þ

Nonexact equations can sometimes be recast into a separable form through a
transformation of variables or multiplied with an integrating factor F(x, y) such that

F x,yð Þ Dy− f x,yð Þð Þ= d μ x,yð Þð Þ= 0 ð11.3.11Þ

Example

For f(x, y) = yx2 solved in Equation (11.3.3), multiplication by ex
3=3=y2 yields

e
x3
3

y2
dy

dx
−x2y

� �
= − e

x3
3
d

dx

1
y

� �
+
x2

y
e
x3
3

� �
= −

d

dx

e
x3
3

y

 !
= 0 ð11.3.12Þ

which again yields ex
3=3 = cy.

An integration factor for first-order differential equations of the form

Dy + a xð Þy = b xð Þ ð11.3.13Þ

is given by
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e
Ð x

l
a x0ð Þdx0 ð11.3.14Þ

which yields

D ye
Ð x
l
a x0ð Þdx0

� �
= b xð Þe

Ð x

l
a x0ð Þdx0 ð11.3.15Þ

Consequently, for the boundary condition y(l) = 0,

ye
Ð x
l
a x0ð Þdx0 =

ðx
l
b x00ð Þe

Ð x00

l
a x0ð Þdx0dx00 + c

y = e−
Ð x

l
a x0ð Þdx0

ðx
l
b x00ð Þe

Ð x00

l
a x0ð Þdx0dx00

ð11.3.16Þ

11.4 WRONSKIAN

A set of n solutions, {ϕi}, to the nth-order linear differential equation

Dny + f1 xð ÞDn−1y +… fn−1 xð ÞDy + fn xð Þy = 0 ð11.4.1Þ

are termed linearly dependent on an interval if a set of constants exist such that

Φ =
Xn
i= 1

ciϕi = 0 ð11.4.2Þ

throughout the interval so that one or more of the solutions can be expressed as a linear

combination of the remaining functions; otherwise, the solutions are termed linearly

independent. Linear independence is insured if the Wronskian

W ϕ1,ϕ2,…,ϕnð Þ =
ϕ1 ϕ2 … ϕn

ϕ1
0 ϕ2

0 � � � ϕn
0

..

. ..
. . .

. ..
.

ϕ n−1ð Þ
1 ϕ n−1ð Þ

2 � � � ϕ n−1ð Þ
n

									

									
ð11.4.3Þ

where ϕ(p) denotes the pth derivative of ϕ, differs from zero throughout the interval.
That is, if, a set of constants exist for which Equation (11.4.2) is satisfied for at least
one point, in the interval, repeatedly repeatedly differentiating both sides of this
equation indicates that in this case not only Φ but also its first n − 1 derivatives are
zero at these points. This matches the unique zero solution to the differential equation;
hence,Φ = 0 and the functions are linearly dependent with zeroWronskian throughout
the interval as e.g. the first column ofW can be replaced by a linear combination of the
other columns.
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11.5 FACTORIZATION

If all fj(x) in Equation (11.4.1) are constants, the equation can be factorized as

D−bnð Þ D−bn−1ð Þ… D−b1ð Þy xð Þ= 0 ð11.5.1Þ

If all bi differ, since the operators (D − bi) commute, the general solution is a super-
position of the solutions of Dyi = biyi with i = 1, 2,…, n, i.e.,

y =
Xn
i= 1

cie
bix ð11.5.2Þ

However, when m of bi are identical, the relevant equation for these factors becomes

D−blð Þmy xð Þ= 0 ð11.5.3Þ

Writing Equation (11.5.3) as (D − bl)[(D − bi)
m − 1y(x)] = 0 yields initially

D−blð Þm−1y xð Þ =~cm−1e
blx ð11.5.4Þ

Multiplying on both sides by the integrating factor e−b1x,

e−blx D−blð Þ D−blð Þm−2y xð Þ =~cm−1

D e−blx D−blð Þm−2
h i

y xð Þ=~cm−1
ð11.5.5Þ

After both sides are integrated

e−blx D−blð Þm−2y xð Þ=~cm−1x +~cm−2

D−blð Þm−2y xð Þ= ~cm−1x +~cm−2ð Þeblx ð11.5.6Þ

and the procedure repeated an additional m − 2 times the final solution is obtained in
the form

y = cm−1x
m−1 + cm−2x

m−2 +…+ c0

 �

eblx ð11.5.7Þ

11.6 METHOD OF UNDETERMINED COEFFICIENTS

Considering next particular solutions of inhomogeneous linear differential equations,

if the inhomogeneous term is composed of functions whose form remains invariant

upon differentiation, the solution can be sought as a linear superposition of such func-

tions with undetermined coefficients. The coefficients are determined by substituting

the proposed solution into the equation.
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Example

To solve

D2 + 4

 �

y = 4x2−2 ð11.6.1Þ

since derivatives of polynomials remain polynomials, a possible trial solution is

ax2 + bx+ c ð11.6.2Þ

Inserting this into Equation (11.6.1) yields

2a + 4ax2 + 4bx+ 4c = 4x2−2 ð11.6.3Þ

Equating corresponding coefficients leads to a = 1, b = 0, c = −1.

The method similarly applies to harmonic inhomogeneous terms as the form of

such functions is unchanged upon differentiation. That is, for an equation of the
form p(D)y = ex + e2x, where p represents a polynomial, A exp(x) + B exp(2x) is a
possible trial function since no new terms are obtained by differentiating the exponen-
tial functions. If, however, one of these exponential functions corresponds to an l-fold
root of p(D), the trial function adopts the form of xl times the exponential together
with all terms (with undetermined coefficients) obtained by differentiating this
expression. Similarly, for an equation p(D)y = cos kx, a possible solution is given by
A cos kx + B sin kx, unless again p(D) possesses multiple roots (alternatively, 2cos
(kx) = exp(ikx) + exp(−ikx) can be employed together with A0 exp(ikx) + B0 exp(−ikx)).

11.7 VARIATION OF PARAMETERS

A trial expression for the particular solution of an inhomogeneous linear differential
equationof ordernwith constant coefficients, e.g., Equation (11.1.2),with all cn(x) con-
stant functions and zero replaced by g(x) after the equals sign, can be expressed as a sum

Φ=
Xn
i= 1

ϕi xð Þti xð Þ ð11.7.1Þ

of products of each of the n linearly independent solutions, ϕi(x), i = 1, 2,…, n, to
the homogeneous equation with unknown functions, ti(x). The ti(x) can then be con-
structed such that the first n − 1 derivatives acting onΦ lead to these derivatives acting
only on the ϕi(x), while the nth derivative generates the inhomogeneous term g(x).
That is, the first derivative of Φ gives

Φ0 =
Xn
i= 1

ϕ0
i xð Þti xð Þ+ϕi xð Þt0i xð Þ
 � ð11.7.2Þ
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Imposing the condition

Xn
i= 1

ϕi xð Þti0 xð Þ= 0 ð11.7.3Þ

leads to

Φ0 =
Xn
i= 1

ϕ0
i xð Þti xð Þ ð11.7.4Þ

Repeating this procedure results in, where ϕ mð Þ
i ≡ dmϕi=dx

m,

Xn
i= 1

ϕ mð Þ
i xð Þt0i xð Þ= 0, m= 0,1,…,n−2 ð11.7.5Þ

while the inhomogeneous term is incorporated at the last step by setting

Xn
i= 1

ϕ n−1ð Þ
i xð Þt0i xð Þ= g xð Þ ð11.7.6Þ

Example

The homogeneous solution to the equation

y00 + y = cosx ð11.7.7Þ

is given by y = c1 cos x + c2 sin x. Accordingly, taking y = t1(x)cos x + t2(x)sin x as
the particular solution and imposing the constraints, obtained with n = 2 in the
above equations,

t01 cosx + t
0
2 sinx = 0

− t01 sinx+ t
0
2 cosx = cosx

ð11.7.8Þ

yields t01 = − sinxcosx = − sin2x=2 and t02 = cos2x= cos2x + 1ð Þ=2 or after integra-
tion t1 = cos 2x/4 and t2 = (sin 2x + 2x)/4. The particular solution therefore equals

Φ =
X2
i= 1

ϕiti

=
1
4
cosx cos2x+

1
4
sinx sin 2x +

1
2
xsinx

=
1
4
cosx 1−2sin2x


 �
+
1
4
sinx 2sinx cosxð Þ+ 1

2
xsinx

=
1
4
cosx+

1
2
x sinx

ð11.7.9Þ
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11.8 REDUCTION OF ORDER

If a homogeneous solution of an nth-order linear differential equation is known,
the equation can be replaced by a new equation of order n − 1. To illustrate, if ϕ(x)

is a homogeneous solution of the general linear inhomogeneous second-order
equation

D2 + p xð ÞD+ q xð Þ
 �
y xð Þ= r xð Þ ð11.8.1Þ

and y(x) is expressed as w(x)ϕ(x), after substitution

ϕw00 + 2ϕ0 + p xð Þϕð Þw0 + ϕ00 + p xð Þϕ0 + q xð Þϕð Þw= r xð Þ ð11.8.2Þ

Since, however, ϕ(x) is a homogeneous solution, the third term on the left-hand side
of the above equation vanishes. Substituting u(x) for w0(x) then yields the first-order
differential equation

ϕu0 + 2ϕ0 + p xð Þϕð Þu xð Þ = r xð Þ ð11.8.3Þ
If u(x) can be determined, w(z) is obtained by solving the first-order equation
w0(z) = u(z).

11.9 SERIES SOLUTION AND METHOD OF FROBENIUS

Differential equations can often be solved by expanding both the solution and the
functions that appear in the equation as power series in the independent variable,
x. In the method of Frobenius, if P(x) and Q(x) in

D2 +P xð ÞD+Q xð Þ
 �
y xð Þ = 0 ð11.9.1Þ

possess convergent power series expansions at the origin, which is then termed a
regular point, expanding P(x), Q(x), and y(x) around x = 0 and setting the coeffi-

cients of equal powers of x to zero yield a recursion relation among the Taylor

series coefficients of y(x).

Example

Inserting

y =
X∞
m= 0

cmx
m ð11.9.2Þ

into (D − 1)y = 0 gives
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X∞
m = 0

cm + 1 m + 1ð Þ−cmð Þxm = 0 ð11.9.3Þ

Since xm are linearly independent, the coefficient of each xj must be zero sepa-
rately; therefore,

cm+ 1 =
cm

m + 1
ð11.9.4Þ

which reproduces the power series expansion of c0 exp(x).

At a regular singular point, P(x) and Q(x) are singular at the origin, but xP(x) and
x2Q(x) are nonsingular so that

P xð Þ=
X∞
m= −1

Pmx
m Q xð Þ=

X∞
m= −2

Qmx
m ð11.9.5Þ

At singular points, y and its derivatives are restricted to a set (possibly empty) of
special values in order for a simple Taylor series solution to exist.

Example

The equation D2y = 2y/x2 possesses the solutions y = x2 and y = 1/x, where
however only the first of these is valid if the finite curvature condition that
y(x)! 0 for x! 0 least as rapidly as x2 is imposed. In this more general case,
the trial solution is therefore taken as

y= xk
X∞
m = 0

amx
m ð11.9.6Þ

where k can be integer, real, or complex. Additionally, if one of the solutions ~y to
Equation (11.8.1) contains a logarithmic singularity, it is obtained from the regular
solution y by replacing the above expression by

~y = ~a−1 y lnx + x
k
X∞
m = 0

~amx
m ð11.9.7Þ

11.10 SYSTEMS OF EQUATIONS, EIGENVALUES,
AND EIGENVECTORS

An nth-order inhomogeneous linear differential equation

anD
n + an−1D

n−1 +…+ a0

 �

y= f xð Þ ð11.10.1Þ

with constant coefficients can be written as a system of n first-order equations
(cf. Eq. (11.2.4))
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w1 xð Þ = dy
dx

w2 xð Þ= dw1

dx

w3 xð Þ= dw2

dx

..

.

dwn−1

dx
= −an−1wn−1−an−2wn−2−…−a0y + f xð Þ

ð11.10.2Þ

or equivalently as the matrix equation

d

dx

y

w1

w2

..

.

wn−1

0
BBBBBBB@

1
CCCCCCCA

=

0 1 0 � � � 0

0 0 1 � � � 0

0 0 0 � � � 0

..

. ..
. ..

. . .
.

1

−a0 −a1 −a2 � � � −an−1

0
BBBBBB@

1
CCCCCCA

y

w1

w2

..

.

wn−1

0
BBBBBBB@

1
CCCCCCCA

+

0

0

0

..

.

f xð Þ

0
BBBBBB@

1
CCCCCCA

ð11.10.3Þ

with the initial condition

w
!

x0ð Þ≡

y x0ð Þ
w1 x0ð Þ
w2 x0ð Þ

..

.

wn−1 x0ð Þ

0
BBBBBBBB@

1
CCCCCCCCA

ð11.10.4Þ

or symbolically

dw
!
xð Þ

dx
=Mw! xð Þ+ f

!
xð Þ ð11.10.5Þ

The homogeneous equation is solved by

w
!

xð Þ = eM x−x0ð Þ w! x0ð Þ ð11.10.6Þ

while after multiplying by the integration factor e−Mx, Equation (11.10.5) becomes

d

dx
e−Mx w

!
xð Þ
 �

= e−Mx f
!
xð Þ ð11.10.7Þ

120 DIFFERENTIAL EQUATIONS



Consequently, the general solution is given by

w! xð Þ= eM x−x0ð Þ w! x0ð Þ + eMx

ðx
xo

e−Mx f
!
x0ð Þdx0 ð11.10.8Þ

Example

For (D − 1) y = ex with initial conditions y(x0) = 1, dy(x0)/dx = 0

M=
0 1
1 0

� �
f
!
xð Þ = 0

ex

� �
w
! x0ð Þ = 1

0

� �
ð11.10.9Þ

so that

e ±Mx =
1 0
0 1

� �
± x

0 1
1 0

� �
+
x2

2!
1 0
0 1

� �
±…=

coshx ± sinhx
± sinhx coshx

� �
ð11.10.10Þ

The solution is then simply obtained from the following intermediate results:

eM x−x0ð Þ w! x0ð Þ=
cosh x−x0ð Þ
sinh x−x0ð Þ

 !

ðx
xo

e−Mx0 f
!
x0ð Þdx0 =

−

ðx
xo

ex
0
sinhx0

� �
dx0

ðx
xo

ex
0
coshx0

� �
dx0

0
BBB@

1
CCCA=

1
2

−

ðx
xo

e2x
0
−1

� �
dx0

ðx
xo

e2x
0
+ 1

� �
dx0

0
BBB@

1
CCCA

ð11.10.11Þ
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12
TRANSFORM THEORY

When linear differential equations of second and higher order are supplemented
by appropriate physical boundary conditions, only certain “eigenfunctions”
either (i) satisfy both the differential equation and the boundary conditions or
(ii) do not change in form along directions in which both the differential equation
and the boundary conditions remain invariant. Any function satisfying the boundary
conditions can then be expressed as a linear superposition of the eigenfunctions.
Expansions in the harmonic eigenfunctions of the wave equation in uniform
regions over finite and infinite intervals are termed Fourier series and Fourier trans-
forms, respectively.

12.1 EIGENFUNCTIONS AND EIGENVECTORS

To illustrate the homogeneous linear differential equation

D2 + k2
� �

y xð Þ = 0 ð12.1.1Þ

is solved by any linear combination of real or complex exponential functions as
these possess a curvature that varies as the negative of their amplitude. However,
additionally imposing boundary conditions on a finite interval such as the Dirichlet
conditions
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y x = 0ð Þ= y x = Lð Þ = 0 ð12.1.2Þ

limits the solution space to the eigenvector solutions

ym = cm sinkmx ð12.1.3Þ

with a discrete spectrum of eigenvalues

km =
πm

L
ð12.1.4Þ

Since c1 sin −kmxð Þ = −c1 sinkmx = c01 sinkmx, the m are conventionally restricted to
positive values. As Equation (12.1.4) encompasses all solutions, the completeness
property states that any continuous function that satisfies the given boundary
conditions at both 0 and L can be written as a Fourier series:

ϕ =
X∞
m= 1

am sinkmx ð12.1.5Þ

As the length, L, of the interval approaches infinity, the spacing between the km
vanishes, the eigenvalue spectrum becomes continuous, and the Fourier series is
replaced by a Fourier transform.

12.2 STURM–LIOUVILLE THEORY

In general, linear second-order differential equations can be transformed into the form
of the Sturm–Liouville equation by incorporation of a suitable integrating factor:

Ly+ λw xð Þy ≡ d

dx
f xð Þdy

dx

� �
−g xð Þy+ λw xð Þy = 0 ð12.2.1Þ

Here, w(x) > 0 is termed the weight factor. For (i) “mixed” boundary conditions,

c1y+ d1
dy

dx
= 0 x = a

c2y + d2
dy

dx
= 0 x= b ð12.2.2Þ

(termed Dirichlet if d1,2 = 0 orNeumann boundary conditions for c1,2 = 0), (ii) periodic
periodic boundary conditions, (assuming f (a) = f (b))

y að Þ= y bð Þ

dy að Þ
dx

=
dy bð Þ
dx

ð12.2.3Þ

123STURM–LIOUVILLE THEORY



or (iii) if f(a) = f(b) = 0, only certain eigenvalues, λ, and eigenfunctions, ym, are
permitted that satisfy the eigenvector equation

Lym =
d

dx
f xð Þdym

dx

� �
−g xð Þym = −λmw xð Þym ð12.2.4Þ

The eigenfunctions form a complete orthogonal set relative to the weights w(x); i.e.,

ðb
a
w xð Þy*i xð Þyj xð Þdx= δij ð12.2.5Þ

Example

The eigenfunctions of Legendre equation

∂

∂μ
1−μ2
� �∂P μð Þ

∂μ

� �
+ l l + 1ð ÞP μð Þ = ∂

∂θ
sinθ

∂P θð Þ
∂θ

� �
+ l l + 1ð ÞsinθP θð Þ= 0

ð12.2.6Þ

are orthogonal over [0, π] relative to the weight w(θ) = sin θ, which satisfies
(iii) above. Indeed,

ðπ
0
Pi θð ÞPj θð Þsinθdθ =

ð1
−1
Pi μð ÞPj μð Þ dμ|{z}

d cosθð Þ

= δij ð12.2.7Þ

If any of the conditions (i) to (iii) are satisfied, the boundary terms below vanish,
implying that L is self-adjoint:

ðb
a
y*nLymdx=

ðb
a
y*n

d

dx
f xð Þdym

dx

 !
dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
−
Ð b
a
dy*n
dx f xð Þ dymdx dx|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}Ð b

a
d
dx f xð Þdy

*
n

dx

� �
ymdx− ,

ymf xð Þdy
*
n

dx

		b
a

+

,

y*nf xð Þdymdx
		b
a

−

ðb
a
g xð Þy*nymdx=

ðb
a

Ly*n
� �

ymdx

ð12.2.8Þ

That λn = λ
*
n, i.e., all eigenvalues are real, thus follows from setting n =m in

ðb
a
y*nLymdx= −λm

ðb
a
w xð Þy*nymdx=

ðb
a

Ly*n
� �

ymdx= −λ*n

ðb
a
w xð Þy*nymdx ð12.2.9Þ
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Equation (12.2.9) then implies that either λn = λ
*
m or

Ð b
a w xð Þyn*ymdx = 0 so that yn and

ym are orthogonal with respect to the weight factor w(x) for differing eigenvalues.
As well, the yn form a complete set of eigenfunctions, meaning that any function

satisfying the boundary conditions can be written as a linear superposition

f xð Þ=
X∞
m = 0

cmym xð Þ ð12.2.10Þ

of eigenfunctions with

cm =

ðb
a
f x0ð Þy*m x0ð Þw x0ð Þdx0
ðb
a
ym x0ð Þj j2w x0ð Þdx0

ð12.2.11Þ

Orthogonality and completeness are related since if Equation (12.2.1) is restricted to a
discrete space of N points, any function can be represented as a superposition of N
linearly independent eigenfunctions.

12.3 FOURIER SERIES

A Fourier series representation of f(x) results from Equations (12.2.10) and (12.2.11)
if periodic boundary conditions are imposed on Equation (12.1.1) over an interval
[a, a + L]. In terms of real even cosine and odd sine functions,

f xð Þ= χ0 +
X∞
n = 1

σn sin
2nπx
L

� �
+ χn cos

2nπx
L

� �
ð12.3.1Þ

or equivalently, expressed as complex exponential functions,

f xð Þ =
X∞
n= 0

σn
e
i2nπxL

−e
− i2nπxL

2i

0
@

1
A+ χn

e
i2nπxL

+ e
− i2nπxL

2

0
@

1
A

0
@

1
A

=
X∞
n= 0

χn− iσn
2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

εm

e
i2nπxL

+
χn + iσn

2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ε−m

e
− i2nπxL

0
BBB@

1
CCCA

=
X∞

m = −∞
εme

i2mπxL

ð12.3.2Þ
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Since
ða+ L
a

sin
2πnx
L

sin
2πmx
L

=
L

2
δnm−δn0δm0ð Þ

ða+ L
a

cos
2πnx
L

cos
2πmx
L

=
L

2
δnm + δn0δm0ð Þ

ða+ L
a

ei
2πnx
L e− i

2πmx
L = Lδnm

ð12.3.3Þ

the Fourier coefficients are given by, where the constant σ0 above is arbitrary as
sin(0) = 0,

χ0 =
1
L

ða+ L
a

f xð Þdx

χn =
2
L

ða + L
a

f xð Þcos 2πnx
L

dx

σn =
2
L

ða+ L
a

f xð Þsin 2πnx
L

dx

εn =
1
L

ða+ L
a

f xð Þe− i
2πnx
L dx

ð12.3.4Þ

If f(x) is complex, some or all of the χm, σm are complex. For real f(x), χm and σm are
real while ε−m = ε*m (insuring that ε−m exp(−2πimx/L) + εm exp(2πimx/L) is real).
Further, σm = 0 (χm = 0) for allm if f(x) is an even (odd) function and the lower interval
limit a = −L/2.

Parseval’s theorem for exponential series states

ða + L
a

g* xð Þf xð Þdx =
X∞

n,m= −∞

ða + L
a

ε gð Þ
n

� �*
ε fð Þ
m ei

2π m−nð Þx
L dx

= L
X∞

n,m= −∞
ε gð Þ
n

� �*
ε fð Þ
m δmn

=L
X∞

n= −∞
ε gð Þ
n

� �*
ε fð Þ
n

ð12.3.5Þ

Setting g = f indicates that |εn|
2 can be considered as the “power” of the nth Fourier

component.
Since each term in the Fourier series does not change if x is replaced by x + L, the

Fourier series periodically extends f(x) with period L beyond the interval Ι = [a, a + L].
Thus, the accuracy of the Fourier series is greatest if f(x) obeys periodic boundary
conditions at the endpoints of Ι or if it is defined on an infinite interval but is
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periodic with period L. Further, since the series employs functions that are infinitely
differentiable, the fewest terms are required for a given level of precision in regions
where f(x) possesses many continuous derivatives. Close to a discontinuity in f(x) or
its derivatives (or a similar discontinuity between f(a) and f(a + L) since the represen-
tation is periodic), the “Gibbs phenomenon,” in which a Fourier series with a finite
number of terms successively overestimates and underestimates f(x) as x approaches
the position of the discontinuity, limits the accuracy of the Fourier series. This
behavior is analyzed in the following example by considering the sum rule that can
always be obtained by evaluating the Fourier series for a function f(x) at any point.

Example

As the function

f xð Þ= sgn xð Þ= −1 x < 0
1 x > 0



ð12.3.6Þ

is odd, its Fourier series on [−π, π] only contains sine terms with

σm =
2
2π

� �
2
ðπ
0
sin mxð Þdx= −

2
mπ

cos mxð Þ
			π
0
= −

2
mπ

−1ð Þm−1ð Þ= 4
mπ

, modd

ð12.3.7Þ

Equations (12.3.1), (12.3.6), and (12.3.7) yield the sum rule for any 0 < x < π

π

4
=
X∞

n = 1,3,…

1
n
sinmx ð12.3.8Þ

for any 0 < x < L/2. For small x (or for x near L/2), a large number of terms in the
above sum are initially positive, summing to a value much larger than π/4 before
mx exceeds π, changing the sign of the subsequent terms. For x = π/2, halfway
between the discontinuities of the periodic extension of f(x) at the origin and
the boundaries, the terms in the sum evaluate to (−1)n/n so that successive terms
instead always alternate signs, yielding the fastest rate of convergence.

12.4 FOURIER TRANSFORMS

AFourier series in L!∞, n!∞ limit is termed aFourier transform.With k = 2πn/L
held finite, the exponential Fourier series coefficient of Equation (12.3.4) becomes,
where F represents the Fourier transform operation,

ffiffiffiffiffi
2π

p
f kð Þ ≡

ffiffiffiffiffi
2π

p
F f xð Þð Þ≡ Lεn =

ðL=2
−L=2

f xð Þe− i2πnxL dx!
ð∞
−∞

f xð Þe− ikxdx ð12.4.1Þ
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where the factor of
ffiffiffiffiffi
2π

p
leads to a symmetric Fourier transform pair (an alternate

convention omits the
ffiffiffiffiffi
2π

p
and instead replaces the factor 1=

ffiffiffiffiffi
2π

p
in the inverse

Fourier transform, Eq. (12.4.2), by 1/2π). With dn = Ldk/2π, Equation (12.4.1)
similarly generates the inverse Fourier transform

f xð Þ =F −1 f kð Þð Þ≡
X∞

n= −∞
εne

i2πnxL

=
ð∞
−∞

εne
i2πnxL dn=

L

2π

ð∞
−∞

εne
i2πnxL dk! 1ffiffiffiffiffi

2π
p

ð∞
−∞

f kð Þeikxdk ð12.4.2Þ

Fourier transforming the derivative of a localized function with f(x)! 0 for x! ±∞

F
df xð Þ
dx

� �
=

1ffiffiffiffiffi
2π

p
ð∞
−∞

e− ikx|ffl{zffl}
g xð Þ

df xð Þ
dx|fflffl{zfflffl}
h0 xð Þ

dx

=
1ffiffiffiffiffi
2π

p −

ð∞
−∞

− ik eikx|fflfflffl{zfflfflffl}
g0 xð Þ

f xð Þ|ffl{zffl}
h xð Þ

dx+ e− ikx|ffl{zffl}
g xð Þ

f xð Þ|{z}
h xð Þ

							

∞

−∞

2
64

3
75= ikf kð Þ ð12.4.3Þ

By extension, the Fourier transform of dnf/dxn equals (ik)nf(k).

12.5 DELTA FUNCTIONS

Combining the direct and inverse Fourier transforms yields

f xð Þ= 1ffiffiffiffiffi
2π

p
ð∞
−∞

f kð Þeikxdk = 1
2π

ð∞
−∞

ð∞
−∞

f x0ð Þeik x− x0ð Þdx0dk ð12.5.1Þ

If the order of integration is reversed,

f xð Þ=
ð∞
−∞

f x0ð Þ 1
2π

ð∞
−∞

eik x− x0ð Þdk
� �

dx0 =
ð∞
−∞

f x0ð Þδ x−x0ð Þdx0 ð12.5.2Þ

where the delta function (distribution)

δ x−x0ð Þ≡ 1
2π

ð∞
−∞

eik x− x0ð Þdk ð12.5.3Þ

vanishes except at x = x0, where it acquires an infinite value such that its integral over
all x0 is unity. The normalization 1/2π in Equation (12.5.3) (and in the definition of the
Fourier transform) can be verified by
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1
2π

ð∞
−∞

eikxdk =
1
2π

lim
κ!∞

ðκ
−κ
eikxdk = lim

κ!∞

sinκx
κπx

ð12.5.4Þ

which, after setting x0 = κx and therefore dx0 = κdx, yields, upon integration,

ð∞
−∞

sinκx
κπx

dx=
1
π

ð∞
−∞

sinx0

x0
dx0 =

1
πi
Im
ð∞
−∞

eix
0

x0
dx0 =

1
πi
πieix

			
x = 0

= 1 ð12.5.5Þ

where the contour of the integral of eix/x bisects the pole and therefore only acquires
half the value of the residue at the origin. Unless the derivatives of the delta function
explicitly enter into a calculation, δ(x − x0) can be defined as the limit of any sequence
of functions that integrate to unity and approach zero for x 6¼ x0 such as a rectangle of
width Δx and height 1/Δx as Δx! 0. In multiple dimensions,

δn r
!
−r

!0� �
=

1
2πð Þn

ð∞
−∞

eik
!� r

!
−r

!0ð Þdnk = δ x−x0ð Þδ y−y0ð Þ… ð12.5.6Þ

Some properties of the one-dimensional delta function are first, with k0 = ak

δ a x−x0ð Þð Þ= 1
2π

ð∞
−∞

eika x− x0ð Þdk =

1
2π

ð∞
−∞

eik
0 x− x0ð Þ dk

0

a
=
1
a
δ x−x0ð Þ a > 0

1
2π

ð −∞
∞

eik
0 x− x0ð Þ dk

0

a
= −

1
a
δ x−x0ð Þ a < 0

8>>>>><
>>>>>:

ð12.5.7Þ

That is, since the area under the delta function viewed as a rectangle equals unity, if
the units of x are changed from, e.g., meters to centimeters, as the width of the
rectangle is a hundred times larger in terms of the new units, its height must be reduced
by a factor of a hundred to generate an area of one in the new system. Alternatively,
the delta function possesses units of 1/L from

Ð
δ(x)dx = 1, which again implies

Equation (12.5.7).
The previous result together with a Taylor expansion of f(x) about its zeros, xi,

yields

δ f xð Þð Þ=
X

i= zeros of f xð Þ

1
2π

ð∞
−∞

eik
df ðxiÞ
dx x−xið Þdk =

X
i= zeros of f xð Þ

1
df xið Þ
dx

				
				
δ x−xið Þ ð12.5.8Þ

where the sum, as indicated, is taken over the zeros (assumed to be of the form a(x − xi))
of f(x). Derivatives of the delta function possess the property
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ð∞
−∞

f xð Þ|{z}
g xð Þ

δ0 x−að Þ|fflfflfflffl{zfflfflfflffl}
h0 xð Þ

dx= f xð Þ|{z}
g xð Þ

δ x−að Þ|fflfflffl{zfflfflffl}
h xð Þ

					
∞

−∞

−

ð∞
−∞

f 0 xð Þ|ffl{zffl}
g0 xð Þ

δ x−að Þ|fflfflffl{zfflfflffl}
h xð Þ

dx= − f 0 að Þ ð12.5.9Þ

and by extension

ð∞
−∞

f xð Þd
nδ x−að Þ
dxn

dx= −1ð Þnd
nf

dxn

				
x = a

ð12.5.10Þ

The delta function can be expressed in terms of the eigenfunctions of any Sturm–

Liouville equation according to Equations (12.2.10) and (12.2.11), which combined
yield

f xð Þ=
X∞
i = 0

ðb
a
f x0ð Þy*i x0ð Þyi xð Þw x0ð Þdx0
ðb
a
yi x

0ð Þj j2w x0ð Þdx0

=
ðb
a
f x0ð Þ

X∞
i= 0

y*i x0ð Þyi xð Þw x0ð Þðb
a
yi x

0ð Þj j2w x0ð Þdx

0
BBB@

1
CCCAdx0 ð12.5.11Þ

and hence

δ x−x0ð Þ =
X∞
i= 0

y*i x0ð Þyi xð Þw x0ð Þðb
a
yi x

0ð Þj j2w x0ð Þdx0

0
BBB@

1
CCCA ð12.5.12Þ

The inverse Fourier transform of a product of two Fourier transforms yields a
convolution in space. Conversely, the Fourier transform of a convolution yields
a product of transformed functions:

ð∞
−∞

f x0ð Þg x−x0ð Þdx0 = 1
2π

ð∞
−∞

ð∞
−∞

eik
0 x0 f k0ð Þ

ð∞
−∞

eik
00 x− x0ð Þg k00ð Þdx0dk0dk00

=
ð∞
−∞

ð∞
−∞

f k0ð Þ 1
2π

ð∞
−∞

ei k
0 − k00ð Þx0dx0

0
@

1
Aeik

00xg k00ð Þdk0dk00

=
ð∞
−∞

f k0ð Þ
ð∞
−∞

eik
00xδ k0−k00ð Þg k00ð Þdk0dk00

=
ð∞
−∞

eik
0xf k0ð Þg k0ð Þdk0 ð12.5.13Þ
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Parseval’s relation is derived similarly:
ð∞
−∞

f xð Þh* xð Þdx =
ð∞
−∞

1ffiffiffiffiffi
2π

p
ð∞
−∞

eik
0xf k0ð Þdk0 1ffiffiffiffiffi

2π
p

ð∞
−∞

e− ik
00xh* k00ð Þdk00dx

=
ð∞
−∞

f k0ð Þ
ð∞
−∞

δ k0−k00ð Þh* k00ð Þdk0dk00

=
ð∞
−∞

f k0ð Þh* k0ð Þdk0 ð12.5.14Þ

12.6 GREEN’S FUNCTIONS

The solution to a linear differential equation with specified boundary conditions and
an inhomogeneous delta function term can be employed to find the solution of the
inhomogeneous differential equation

Ly r
!� �= f r

!� � ð12.6.1Þ

subject to the same boundary conditions. In particular, by linearity, y r
!� � must be a

sum of contributions from the individual points in the source distribution f r
!0� �

d3r
!0

according to

y r
!� � =

ð∞
−∞

f r
!0� �

G r
!, r!0� �

dr0 ð12.6.2Þ

However, since L acts only on the variable r
!,

Ly r
!� � =

ð∞
−∞

f r
!0� �

LG r
!, r!0
� �

d3r0 = f r
!� � =

ð∞
−∞

= f r
!0� �

δ r
!
−r

!0� �
d3r0 ð12.6.3Þ

Accordingly, since f r
!� � is arbitrary, theGreen’s function G(x, x0) must obey the bound-

ary conditions and the defining equation

LG r
!, r!0
� �

= δ r
!
−r

!0� � ð12.6.4Þ

Examples

1. The Green’s function for the first-order differential equation describing
linear-free particle motion in the presence of friction

m
dv

dt
+ αv =F tð Þ ð12.6.5Þ
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solves

m
dG t, t0ð Þ

dt
+ αG t, t0ð Þ= δ t− t0ð Þ ð12.6.6Þ

The delta function term here corresponds to a unit impulse, yielding a momentum
change I =Δp = 1 at t = t0. Causality therefore yields the single required boundary
condition G(t, t0) = 0 for t < t0 as a disturbance at t0 only affects y(t) at later times t.
The solution to Equation (12.6.6) for t > t0 where δ(t − t0) = 0 is the homogeneous
expression

G t, t0ð Þ= ce− α
mt ð12.6.7Þ

To determine c for t > t0, Equation (12.6.6) can be integrated from a time, t = t0 − δ,
just before t0 to t = t0 + δ. Since G is finite, the integral over the second term on the
left-hand side approaches zero as δ! 0 leaving

ðt0 + δ
t0−δ

m
dG t, t0ð Þ

dt
dt =mce−

α
m t

0
=
ðt0 + δ
t0−δ

δ t− t0ð Þdt = 1 ð12.6.8Þ

so that c = exp(αt0/m)/m, consistent with the interpretation of the inhomogeneous
term as a unit impulse. Accordingly, where θ(t) = 1 for t > 0 and zero for t < 0,

G t, t0ð Þ = 1
m
e−

α
m t− t0ð Þθ t− t0ð Þ ð12.6.9Þ

Since time is homogeneous,G depends only on t − t0 and not on t and t0 separately.

2. The Green’s function of a free particle of mass m in one dimension again
describes a unit impulse

m
d2G

dt2
= δ t− t0ð Þ ð12.6.10Þ

applied at time t0. Except at t = t0, the Green’s function must satisfy the homoge-
neous equation and can again only depend on t − t0, implying G = c1(t − t0) + c2.
Again, integrating Equation (12.6.10) as in the previous problem and employing
G(t − t0 < 0) = c2 = 0 so that dG=dtjt = t0 −ε = 0,

ðt0+
t0−

d2G

dt2
dt =

dG

dt

				
t = t0 + ε

−
dG

dt

				
t = t0 −ε

=
1
m

ð t0+
t0−

δ t− t0ð Þdx= 1
m

ð12.6.11Þ

as the momentum and velocity changes at t0 are 1 and 1/m, respectively. The
physical retarded or casual Green’s function therefore reflects the acquisition
of unit momentum at time t0:

Gretarded t− t0ð Þ= 1
m

t− t0ð Þθ t− t0ð Þ ð12.6.12Þ
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the second derivative of which diverges at t 0 and is zero elsewhere. The normally
unphysical advancedGreen’s function forwhich the impulse instead halts amoving
particle at t = t 0 instead satisfies the boundary condition G(t − t0 > 0) = 0:

Gadvanced t, t0ð Þ = −
1
m

t− t0ð Þθ t0− tð Þ ð12.6.13Þ

Another procedure for constructing G(t − t0) Fourier transforms both sides of
Equation (12.6.10):

1ffiffiffiffiffi
2π

p
ð∞
−∞

d2G

dt2

� �
|fflfflfflffl{zfflfflfflffl}

g0 tð Þ

e− iωt|ffl{zffl}
h tð Þ

dt =
1ffiffiffiffiffi
2π

p iω

ð∞
−∞

dG

dt|{z}
~g0 tð Þ

e− iωt|ffl{zffl}
~h tð Þ

dt +
dG

dt|{z}
g tð Þ

e− iωt|ffl{zffl}
h tð Þ

									

∞

−∞

0
BBB@

1
CCCA

=
1ffiffiffiffiffi
2π

p −ω2
ð∞
−∞

e− iωt G|{z}
~g tð Þ

dt + iωGe− iωt
					
∞

−∞

0
B@

1
CA

ð12.6.14Þ

where an artificial infinitesimal negative imaginary component − iε is added to ω
to eliminate the upper limits of the surface terms while G(−∞) = 0 for casual
boundary conditions eliminates the lower limits. Setting Equation (12.6.14)
equal to e− iωt

0
=
ffiffiffiffiffi
2π

p
, the Fourier transform of δ(t − t0), yields

G ωð Þ= −
eiωt

0

ffiffiffiffiffi
2π

p
ω2

ð12.6.15Þ

For t − t0 > 0, inverse Fourier transforming, where − iε is again added to ω and the
contour is closed in the upper half plane over which exp(iα)! 0 with α = (t − t0)ω
as |ω|!∞, yields

Gretarded t− t0ð Þ = −
1
2π

ð∞
−∞

eiωt
e− iωt

0

ω− iεð Þ2 dω

= −
t− t0ð Þ
2π

ð∞
−∞

eiα

α− iεð Þ2dα

= −
t− t0ð Þ
2π

2πi
1!

lim
α!iε≈0

deiα

dα

= t− t0ð Þ

ð12.6.16Þ

For (t − t0) < 0, the contour is closed in the lower half plane excluding the pole at
ω = iε, yielding Gretarded(t − t0) = 0. Evaluating the contour integral with ε < 0
yields instead Gadvanced(t − t0).
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The Green’s function for the Sturm–Liouville equation is obtained by expanding

G x, x0ð Þ=
X∞

i= 1
ci x

0ð Þyi xð Þ in the normalized eigenfunctions of the homogeneous

equation

d

dx
f xð Þ d

dx

� �
−g xð Þ+ λw xð Þ

� �X∞
i= 1

ci x
0ð Þyi xð Þ = δ x−x0ð Þ

X∞
i= 1

−λi + λð Þci x0ð Þw xð Þ yi xð Þ = δ x−x0ð Þ
ð12.6.17Þ

Multiplying both sides of the lower equation by y*j xð Þ, integrating over all space and

employing the orthogonality of the yi, results in cj x0ð Þ = y*j x0ð Þ= λ−λið Þ and therefore

G x, x0ð Þ=
X∞
i= 1

yi xð Þy*i x0ð Þ
λ−λi

ð12.6.18Þ

Example

The Green’s function for the one-dimensional Helmholtz equation on [0, 1]

d2y xð Þ
dx2

+ k2y xð Þ= 0 ð12.6.19Þ

with boundary conditions y(0) = y(1) = 0 leading to normalized eigenfunctions and
eigenvalues yn xð Þ= ffiffiffi

2
p

sin knxð Þ with kn = nπ is given by

G x, x0ð Þ= 2
X∞
n= 1

sin nπx0ð Þsin nπxð Þ
k2−n2π2

ð12.6.20Þ

For k = nπ for any n, the Green’s function is infinite since a solution y(x) does not
exist to

d2y

dx2
+ n2π2y= sinnπx ð12.6.21Þ

Equation (12.6.20) coincides with the Green’s function of Equation (12.6.10).
which, to be continuous at x = x0 and satisfy the given boundary conditions must be
of the form

G x, x0ð Þ =
ax 1−x0ð Þ x< x0

a 1−xð Þx0 x> x0

(
ð12.6.22Þ

where the derivative possesses a unit discontinuity so that at x = x0

−ax−a 1−x0ð Þ = 1 ð12.6.23Þ
and therefore a = −1. Hence, Equation (12.6.22) can be written as, with x< =
min(x, x0) and x> = max(x, x0),
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G x, x0ð Þ= x x0−1ð Þθ x0−xð Þ + x0 x−1ð Þθ x−x0ð Þ = x < x > −1ð Þ ð12.6.24Þ
The above form is consistent with the symmetry of the domain under the transfor-
mation x, x0 $ 1 − x, 1 − x0. While G(x, x0) =G(x0, x), G does not depend only on
x − x0 since the boundary conditions are not translationally invariant. Multiplication
of both sides of the expansion

G x, x0ð Þ =
X∞
m= 0

σm sin mπx0ð Þ ð12.6.25Þ

by sin(pπx0) and integrating over x0 from 0 to 1 as follows reproduces
Equation (12.6.20) with k = 0 as

cp = 2 x−1ð Þ
ðx
0
x0 sinpπx0dx0 + x

ð1
x
x0−1ð Þsinpπx0dx0

� 

= 2 x

ð1
0
x0 sinpπx0dx0−

ðx
0
x0 sinpπx0dx0−x

ð1
x
sinpπx0dx0

� 

= 2 −x

,cospπ
pπ

− −x
1
pπ , ,

cospπx +
sinpπx
p2π2

8<
:

9=
;−x −

,cospπ
pπ

+ , ,

cospπx
pπ

8<
:

9=
;

2
4

3
5

= −
2sinpπx
p2π2

ð12.6.26Þ

12.7 LAPLACE TRANSFORMS

The Laplace transform

Lf sð Þ ≡
ð∞
o
f xð Þe−sxdx ð12.7.1Þ

replaces the complex exponential function in the Fourier transform by a real
exponential. While Equation (12.7.1) is explicitly real for real f(x), this complicates
the evaluation of the inverse transform, which is therefore often obtained by referring
to precomputed tables.

If f xð Þe−s0xj j remains finite as x!∞, the function f(x) is termed exponential of
order s0 and the following relationships hold for Re(s) > s0:

Le−ax f sð Þ =
ð∞
0
e−axf xð Þe−sxdx=Lf s + að Þ ð12.7.2Þ

Ldf

dx
sð Þ=

ð∞
o

df

dx|{z}
g0 xð Þ

e−sx|{z}
h xð Þ

dx= f xð Þ|{z}
g xð Þ

e−sx|{z}
h xð Þ

j∞0 −

ð∞
o

f xð Þ|{z}
g xð Þ

−sð Þe−sx|fflfflfflfflffl{zfflfflfflfflffl}
h0 xð Þ

dx= − f 0ð Þ + sLf sð Þ

ð12.7.3Þ
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This relation can be iterated to obtain the Laplace transforms of higher-order deriva-
tives, e.g.,

Ld2f

dx2
sð Þ= −

df

dx
0ð Þ + sLdf

dx
sð Þ

= −
df

dx
0ð Þ + s − f 0ð Þ+ sLf sð Þ� � ð12.7.4Þ

and with d0f/dx0≡ f,

Ldnf
dxn

sð Þ = snLf sð Þ−
Xn
j= 1

sj−1
dn− jf

dn− jx
0ð Þ ð12.7.5Þ

Examples

L1 sð Þ =
ð∞
0
e−sxdx=

1
s

ð12.7.6Þ

Leax sð Þ =
ð∞
0
e−sxeaxdx=

1
a−s

e a−sð Þx
			∞
0
=

1
s−a

ð12.7.7Þ

for Re(s) > a. From this expression,

Lcoskx sð Þ = 1
2

1
s− ik

+
1

s + ik

� �
=

s

s2 + k2
ð12.7.8Þ

Inverse Laplace transforms are often evaluated by transforming a quotient of algebraic

functions into a sum of partial fractions whose inverse Laplace transform can be

obtained from tables.

Example

Laplace transforming the differential equation

D2 + 4
� �

y xð Þ= 0, y 0ð Þ= 2, y0 0ð Þ = 2 ð12.7.9Þ

according to Equation (12.7.5) replaces differential by algebraic expressions
so that

s2Ly sð Þ−y0 0ð Þ−sy 0ð Þ� �
+ 4Ly sð Þ= 0

s2Ly sð Þ−2−2s� �
+ 4Ly sð Þ= 0

ð12.7.10Þ
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or

Ly sð Þ = 2s
s2 + 4

+
2

s2 + 4
ð12.7.11Þ

Equation (12.7.8) and the corresponding result for the sine function then yield
y = sin 2x + 2 cos 2x.

12.8 Z-TRANSFORMS

Laplace transforming a function defined on a discrete set of points at locations 0, T,
2T,… according to

f xð Þ=
X∞
k = 0

fkδ x−kTð Þ ð12.8.1Þ

and setting z = esT yields the z-transform

Zf zð Þ=
X∞
k = 0

fkz
−k ð12.8.2Þ

Power series expansions can be manipulated from tables of forward and reverse
z-transforms.

Examples

1. The z-transform of fk = 1 yields the sum, (1 − 1/z)− 1, of a geometric series.

2. Since replacing 1/z by z in Equation (12.8.2) leads to a standard power series,
fk = 1/k ! implies Zf (z) = e1/z.
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13
PARTIAL DIFFERENTIAL
EQUATIONS AND SPECIAL
FUNCTIONS

Differential equations involving two or more variables are termed partial differential
equations. While numerical solution methods are required for general source distribu-
tions, medium properties, and boundary conditions, analytic results are often acces-
sible for structures with the symmetries of orthogonal coordinate systems. Thus, a
homogeneous sourceless medium within a rectangular boundary can be described
in rectangular coordinates as a superposition of products of harmonic and hyperbolic
functions. The analogous functions for other orthogonal coordinate systems are
termed “special functions,” the simplest of which are summarized in this chapter.

13.1 SEPARATION OF VARIABLES AND RECTANGULAR
COORDINATES

Partial differential equations involving multiple variables are often simply analyzed in
a discrete representation.
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Example

The Laplace equation in Cartesian coordinates

r2V =
∂2V

∂x2
+
∂2V

∂y2
= 0 ð13.1.1Þ

for Δx =Δy =Δα takes the form, by extension of Equation (6.1.17),

V x +Δα,yð Þ +V x−Δα,yð Þ+V x,y +Δαð Þ+V x,y +Δαð Þ−4V x,yð Þ
Δαð Þ2 = 0 ð13.1.2Þ

Equation (13.1.2) restricts V at the center of four equidistantly spaced surrounding
points to the average of V over these points, thus coupling values of V along both
the x - and y - directions. A unique solution results if boundary conditions are sup-
plied on all boundaries of a closed surface by imposing this restriction iteratively as

Vn x,yð Þ= Vn−1 x+Δα,yð Þ+Vn−1 x−Δα,yð Þ +Vn−1 x,y+Δαð Þ+Vn−1 x,y +Δαð Þ
4 ð13.1.3Þ

in which Vn(x, y) is interpreted as the solution after n computation steps and the
boundary conditions are further imposed at each step. Thus,Vwithin a square of unit
length with V = 1 along the line x = 0 and V = 0 on the other boundaries is obtained
from the following Octave program, where Vn − 1(xi, yj) must be stored before calcu-
lating Vn(xi, yj) so that it is not overwritten before, e.g., Vn(xi + 1, yj) is evaluated:

clear all
numberOfPoints = 20;
numberOfSteps = 2000;
grid = zeros( numberOfPoints, numberOfPoints );
gridSave = zeros( numberOfPoints, numberOfPoints );
grid(1, :) = 1;
grid(numberOfPoints, :) = 0;
grid(:, numberOfPoints) = 0;
grid(:, 1) = 0;
for stepLoop = 1 : numberOfSteps;

gridSave = grid;
for outerLoop = 2 : numberOfPoints - 1

for innerLoop = 2 : numberOfPoints - 1
grid(outerLoop, innerLoop) = 0.25 * ( …

gridSave(outerLoop, innerLoop + 1) + …
gridSave(outerLoop, innerLoop - 1) + …
gridSave(outerLoop + 1, innerLoop) + …
gridSave(outerLoop - 1, innerLoop) );

end
end

end;
mesh(grid)
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If the symmetries of the partial differential equation, medium, boundaries, and source
distributions coincide with those of an orthogonal coordinate system ξ, ψ , ζ, the
method of separation of variables can often be employed. In three dimensions, six
boundary surfaces (planes) are defined by ξ = c1, c2, ψ = c3, c4, and ζ = c5, c6. Since
the Laplacian operator is linear, the principle of superposition holds, and the potential

inside a region for which potential functions V boundary
1 ,…,V boundary

6 are specified on
each of the boundary surfaces is equal to the sum of the solutions of six problems such
that in the mth problem the potential at the mth boundary equals V boundary

m , while the
potential on the other boundaries is zero. The solution to each of these problems can
then be expressed as a product of functions of the individual variables, i.e.,

Vm ξ,ψ ,ζð Þ=Ξ ξð ÞΨ ψð ÞΖ ζð Þ ð13.1.4Þ

Examples

A problem in which nonzero boundary conditions are specified on all four sides of
a homogenous two-dimensional square medium is recast as the sum of four inde-
pendent problems each of which employs nonzero boundary conditions on a single
side of the square and zero boundary conditions on the remaining three sides. Thus,
the solution of the two-dimensional Laplace equation on a square region extending
from (0, 0) to (L, L) with boundary conditions on the four lines x = 0, x = L, y = 0,
y = L given by V boundary(0, y) = V boundary(x, 0) = 0, V boundary(x, L) = sin πx=L,
and V boundary(0, y) = sin 2πy=L by superposition can be expressed as V1 + V2,
where V1 and V2 solve the Laplace equation with boundary conditions

V boundary
1 0,yð Þ= V boundary

1 L,yð Þ=V boundary
1 x, 0ð Þ= 0, V boundary

1 x,Lð Þ= sin πx=L and

V boundary
2 L,yð Þ= V boundary

2 x, 0ð Þ=V boundary
2 x,Lð Þ= 0, V boundary

2 0,yð Þ = sin 2πy=L,
respectively. With V1 = X1(x)Y1(y), a single Fourier component X1(x) = sin πx=L
satisfies the boundary condition along the side of the square at y = L and addition-
ally insures that V1(x, y) vanishes at x = 0, L for all values of y. Inserting V1 into the
Laplace equation indicates that Y1(y) satisfies

,

sin
πx

L

� �d2Y1 yð Þ
dy2

= −Y1 yð Þ d
2

dx2
sin

πx

L

� �h i
=

π

L

� �2

,

sin
πx

L

� �
Y1 yð Þ ð13.1.5Þ

The boundary condition at y = 0 and the condition Y1(L) = 1 are therefore satis-
fied by the solution Y1(y) = sinh(πy=L)=sinh(π) of Equation (13.1.5). For V2, the
potential must instead be zero at y = L. Since the differential equation remains
invariant under the transformation x$ L − x, this is accomplished by setting
V2 = sin(2πy=L)sinh(2π(L − x)=L)=sinh(2π).

If arbitrary boundary conditions are imposed on V(x, y) along the sides of a
square, these can be expanded in Fourier series, and the superposition principle
again applied to express the solution as a sum over the potentials arising from
each Fourier component individually. Thus, for V boundary(0, y) = V boundary(π, y)
= V boundary(x, 0) = 0, V boundary(x, π) = V0, the Fourier expansion of V boundary(x, π)
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is given by (the general case in which the boundaries are at x0 = 0 and L is obtained
by the transformation x! πx0=L, y! πy0=L)

V boundary x,πð Þ=
X∞
n = 1

cn sin nx=V0 ð13.1.6Þ

Multiplying both sides of the above equation by sinmx and integrating over [0, π]
according toðπ

0
sinmxsin nxdx= δmn

π

2
ðπ
0
sinmxV x,Lð Þdx= −

V0

m
cosmx

���π
0
= −

V0

m
−1ð Þm−1ð Þ

ð13.1.7Þ

yields

V boundary x,πð Þ=V0

X∞
m odd

4
mπ

sinmx ð13.1.8Þ

and consequently, from the superposition principle, following the calculation of
Equation (13.1.5), the solution satisfying the three boundary conditions is given by

V x,yð Þ=
X
m odd

4V0

mπ sinhmπ
sinmxsinhmy ð13.1.9Þ

In the diffusion equation, the velocity of decay of a field y(x, t) is proportional to
its curvature:

dy x, tð Þ
dt

=D
d2y x, tð Þ
dx2

ð13.1.10Þ

Consequently, if the curvature is negative, y(x, t) decays exponentially to zero with
time. The temperature distribution of an inhomogeneously heated solid rod with an
initial temperature profile given by y(x, t = 0) = T(0)sin πx=L in �C and its two ends
at 0 and L held at T = 0 at all t is determined by inserting y(x, t) = T(t)X(x) where
X(x) = sin πx=L to satisfy the initial condition into Equation (13.1.10) so that

dT tð Þ
dt

sin
πx

L
= −D

π

L

� �2
sin

πx

L
T tð Þ ð13.1.11Þ

and therefore

T tð Þ= T 0ð Þe−D π
Lð Þ2t ð13.1.12Þ

An arbitrary initial condition y(x, 0) = y0(x) can be decomposed through Fourier
analysis into a superposition

y x, 0ð Þ =
X∞
n= 1

cn sin
nπx

L
ð13.1.13Þ
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with

cn =
2
L

ðL=2
−L=2

y x, 0ð Þsin πnx

L
dx ð13.1.14Þ

The problem can then be viewed as a superposition of an infinite number of sub-
problems such that the initial condition for the nth problem is given by yn(x, t = 0) =
cn sin nπx=L. Hence,

y x, tð Þ =
X∞
n= 1

cne
−D nπx

Lð Þ2t sin nπx

L
ð13.1.15Þ

Numerically, the diffusion equation can be solved by applying the forward
finite difference approximation to the time derivative and the centered approxima-
tion to the second spatial derivative:

T xi, ti+ 1ð Þ−T xi, tið Þ
Δt

=D
T xi+ 1, tið Þ−2T xi, tið Þ+ T xi−1, tið Þ

Δxð Þ2

T xi, ti+ 1ð Þ =T xi, tið Þ + DΔt
Δxð Þ2 T xi+ 1, tið Þ−2T xi, tið Þ+ T xi−1, tið Þð Þ

ð13.1.16Þ

as in the program below. Numerical stability is only ensured for sufficiently small
DΔt=(Δx)2:
numberOfPoints = 50;
numberOfTimeSteps = 1000;
deltaTime = 0.02;
windowLength = 10;
diffusionConstant = 0.5;
deltaX = windowLength / ( numberOfPoints - 1 );
equationConstant = diffusionConstant * deltaTime / …

( deltaX * deltaX );
position = ( 0 : numberOfPoints – 1 ) * deltaX;
temperature = sin ( pi * position / windowLength );

for outerLoop = 0 : numberOfTimeSteps
if (mod(outerLoop, 100) == 0)

plot(position, temperature);
drawnow;

end
tempSaveNew = 0;
for loop = 2 : numberOfPoints - 1

tempSave = temperature(loop);
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temperature(loop) = temperature(loop) + …
equationConstant * ( tempSaveNew - 2 * …
temperature(loop) + temperature(loop + 1) );

tempSaveNew = tempSave;
end

end

In three dimensions for a potential function specified on the surfaces of a rectangular
prism, inserting V(x, y, z) = X(x)Y(y)Z(z) into the Laplace equation and dividing the
result by V(x, y, z) yields

1
X xð Þ

d2X xð Þ
dz2

≡Ξ xð Þ = −
1

Y yð ÞZ zð Þ Y yð Þd
2Z zð Þ
dx2

+ Z zð Þd
2Y yð Þ
dy2

� �
≡Σ y,zð Þ ð13.1.17Þ

Since, e.g., all partial derivatives of Ξ(x) and consequently of Σ(y, z) with respect to y
and z are then zero, these both must equal an invariant separation constant.

This separation constant should be set to −k2x if the boundary conditions are specified

on a y = constant or z = constant face so that a Fourier series in x is required to rep-

resent the potential along the boundary and + k2x otherwise. Subsequently, in the same
manner,

1
Z zð Þ

d2Z zð Þ
dz2

+−k2x ≡Ν zð Þ = 1
Y yð Þ

d2Y yð Þ
dy2

≡Ψ yð Þ = ± k2y ð13.1.18Þ

For example, if the potential is specified on the z = 0 face of a cube and is zero on the
remaining faces, sinusoidal functions that satisfy

d2Xm xð Þ
dx2

= −k2x,mXm xð Þ

d2Yn yð Þ
dx2

= −k2y,nYn yð Þ
ð13.1.19Þ

where Xn and Yn are zero at x = 0, Lx and y = 0, Ly, respectively, are required so that V
at z = 0 can be expanded as

V x,y,z= 0ð Þ =
X∞

n,m= 1

cmnXm xð ÞYn yð ÞZmn z = 0ð Þ ð13.1.20Þ
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Each function Zmn(z) then corresponds to the hyperbolic solution with Zmn(Lz) = 0
and Zmn(0) = 1 of

d2Zmn zð Þ
dz2

= k2z,mn = k2x,m + k2y,n

� �
Zmn zð Þ ð13.1.21Þ

Separation of variables can also be employed to determine Green’s functions.

Example

Following the formalism of Equation (12.6.18), the Green’s function of the
Poisson equation with zero boundary conditions on the surface of a rectangular
region bounded by the planes at x = 0, π and y = 0, π can be constructed from
the normalized eigenfunctions

Vmn =Xm xð ÞYn yð Þ= 2
π
sinmxsin ny ð13.1.22Þ

of the two-dimensional Helmholtz equation

∂2V x,yð Þ
∂x2

+
∂2V x,yð Þ

∂y2
+ k2V x,yð Þ = 0 ð13.1.23Þ

which satisfy

r2Vmn = − m2 + n2
� �

Vmn ≡ −k2mnVmn ð13.1.24Þ

From Equation (12.6.18), the Green’s function is then obtained by setting
k2 = 0 in

GHelmholtz r
!, r!0
� �

=
4
π2

X∞
n,m = 1

sinmx sin ny sinmx0 sin ny0

k2−k2mn
ð13.1.25Þ

Alternatively, this Green’s function can be constructed in a different form by
expanding in a complete set of eigenfunctions of the Poisson equation that solve
the boundary conditions in the two regions y < y0 and y > y0 (or equivalently in x <
x0 and x > x0) as

G r
!, r!0
� �

≡
X∞
n = 1

gn r
!0,y
� �

sin nx=

X∞
n= 1

un x0, y0ð Þsinhny0½ �sin nx sinhn π−yð Þ y> y0

X∞
n= 1

dn x0, y0ð Þsinhn π−y0ð Þ½ �sin nx sinhny y< y0

8>>>><
>>>>:

ð13.1.26Þ
As a result of the symmetric form employed for the y0 dependence within the
square brackets, continuity of G at y = y0 implies

un x0, y0ð Þ= dn x0, y0ð Þ ð13.1.27Þ
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Additionally, from the equation for Green’s function,

X∞
m= 1

−m2gm +
∂2gm
∂y2

 !
sinmx= δ x−x0ð Þδ y−y0ð Þ ð13.1.28Þ

After multiplying both sides by sin nx and integrating over the interval [0, π],

π

2
−n2gn +

∂2gn
∂y2

 !
= sin nx0δ y−y0ð Þ ð13.1.29Þ

indicating that dn(x0, y0) =Cn(y0)sin nx0. Further, the above equation yields

π

2
lim
Δy!0

∂gn
∂y

����
y= y0 +Δy

−
∂gn
∂y

����
y = y0 −Δy

 !
= sin nx0 ð13.1.30Þ

which, from Equations (13.1.26) and (13.1.27), reduces to, after canceling sin nx0,

nπCn y0ð Þ
2

− sinhny0 coshn π−y0ð Þ− sinhn π−y0ð Þcoshny0ð Þ = 1 ð13.1.31Þ

Applying sinh(a + b) = sinh a cosh b + cosh a sinh b leads to Cn(y0) = −2(nπ sinh
nπ)−1 and consequently, with y> = max(y, y0) and y< =min(y, y0),

G r
!, r!0
� �

= −
2
π

X∞
n= 1

1
nsinhnπ

sin nxsin nx0 sinhn π−y>ð Þsinhny< ð13.1.32Þ

13.2 LEGENDRE POLYNOMIALS

In spherical coordinates, the Laplace equation adopts the form of Equation (8.2.12).
For problems with boundaries that lie along planes with constant spherical coordinate
values, separation of variables assumes a solution of the form V(r, θ, ϕ) = R(r)Y(θ, ϕ),
which yields

1
Rl rð Þr

d2

dr2
rRl rð Þð Þ= l l + 1ð Þ= −

1
Y θ,ϕð Þ

1
sin θ

∂

∂θ
sin θ

∂Y θ,ϕð Þ
∂θ

� �
+

1

sin2θ

∂2Y θ,ϕð Þ
∂ϕ2

 !

ð13.2.1Þ

The form of the separation constant l(l + 1) is motivated by the general solution,
Rl(r)≈ crl + dr− (l + 1), of the radial equation, which can be written as

d2

dr2
rRl rð Þð Þ= l l+ 1ð Þ

r2
rRl rð Þð Þ ð13.2.2Þ
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The constant l adopts noninteger values if boundary conditions are imposed along
cones θ = θ1,2 or on planes ϕ = ϕ1,2. In azimuthally symmetric problems since
∂2Y(θ, ϕ)=∂ϕ2 = 0,

1
sin θ

d

dθ
sin θ

dPl cos θð Þ
dθ

� �
+ l l+ 1ð ÞPl cos θð Þ= 0 ð13.2.3Þ

Here, Pl (cos θ) is termed the lth Legendre polynomial. Substituting x = cos θ for
which d=dθ = (dx=dθ)(d=dx) = −sin θ(d=dx) yields an alternative equation for P(x)

d

dx
1−x2
� �
|fflfflfflffl{zfflfflfflffl}

sin2θ

dPl xð Þ
dx

0
B@

1
CA+ l l+ 1ð ÞPl xð Þ= 0 ð13.2.4Þ

The most general azimuthally symmetric solution to Equation (13.2.1) on the domain
0 ≤ θ ≤ π is

V r,θð Þ=
X∞
l= 0

clr
l + dlr

− l+ 1ð Þ
� �

Pl cos θð Þ ð13.2.5Þ

The Legendre polynomials can be generated from the electric potential of a point
charge at r

!0, V rð Þ= 1= r
!
−r

!0�� ��, which satisfies the Laplace equation away from r
!0.

For r!0 along the z-axis, the angle between r
! and r

!0 coincides with the polar angle
θ, and hence,

ϕ r,θð Þ = 1

r!−r!0
�� �� = 1

r2 + r02−2rr0 cos θ
� �1

2

=
1

r2 + r02−2rr0x
� �1

2

ð13.2.6Þ

Since for a charge on the axis of symmetry the potential is on the axis of symmetry, it
must be of the form of Equation (13.2.5). For r! also along the z-axis, expanding in a
Taylor series

1

r
!
−r

!0�� �� = 1
r−r0j j =

1
r >

1−
r <
r >

� �−1
=
X∞
i= 0

rl<
r l+ 1>

ð13.2.7Þ

With θ = 0, x≡ cos θ = 1, the Legendre polynomials are normalized according to

Pl 1ð Þ = 1 ð13.2.8Þ

and Equation (13.2.5) becomes V r, 0ð Þ =P∞
l= 0 clrl + dlr− l+ 1ð Þ� �

. Identifying like
powers of r with Equation (13.2.7),

cl =
1

r0ð Þl+ 1 =
1

rl+ 1>
dl = 0 r < r0

cl = 0 dl = r0ð Þl = rl< r > r0
ð13.2.9Þ

146 PARTIAL DIFFERENTIAL EQUATIONS AND SPECIAL FUNCTIONS



Inserting Equation (13.2.9) into Equation (13.2.5) then results in an expansion of
the potential in terms of the Legendre polynomials for arbitrary r

!with r
!0 positioned

along z

1

r!−r!0
�� �� =

X∞
l= 0

rl<
rl+ 1>

Pl cos θð Þ ð13.2.10Þ

Setting t≡ r<=r> yields the generating function for the Legendre polynomials GP(x, t)

1

r
!
−r

!0�� �� = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−2rr0 cos θ + r02

p =
1
r >

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2xt + t2

p ≡
1
r >

GP x, tð Þ= 1
r >

X∞
i= 0

t lPl xð Þ

ð13.2.11Þ

Expanding (1 − 2xt + t2)− 1/2 in a power series and identifying the coefficient of tl with
Pl(x) (or equivalently employing Pl(x) = (1=l !)∂lGp=∂

ltjt = 0) gives

P0 xð Þ= 1
P1 xð Þ= x
P2 xð Þ= 1

2
3x2−1
� � ð13.2.12Þ

These can be obtained directly from Rodriguez’s formula, whose derivation is alge-
braically involved

Pl xð Þ= 1

2ll!

dl

dxl
x2−1
� �l ð13.2.13Þ

The Legendre polynomial Pl(x) is real with highest power xl, and subsequent powers
xl − 2, xl − 4, … and is therefore even for even l and odd for odd l.

The Pl(x) can also be obtained with the method of Frobenius, which employs the
trial solution

T xð Þ= xα
X∞
n= 0

anx
n ð13.2.14Þ

For single-valued solutions on [−1, 1], l is an integer and α = 0, which gives after
Equation (13.2.14) is inserted into the Legendre equation

X∞
n= 1

an 1−x2ð Þn n−1ð Þxn−2−2nxn + l l + 1ð Þxn� �

=
X∞
n= 1

an n n−1ð Þxn−2− n n+ 1ð Þ− l l+ 1ð Þð Þxn� �
= 0

ð13.2.15Þ
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Equating identical powers of n in the last line of the above equation generates the
recursion relation

an+ 2 =
n n+ 1ð Þ− l l+ 1ð Þ

n + 2ð Þ n + 1ð Þ an ð13.2.16Þ

The series, which is normalized after it is computed, terminates when n = l. For even
and odd l, the lowest term is a0 and a1, respectively. For example, for l = 2, the ter-
minating solution is obtained by setting an = 0 = −1=2 to insure that P2(0) = 1 leading to
a2 = −3a0 and a4 = 0.

Significant properties and derivations of Legendre polynomials are given below.
A recursion relation is obtained by differentiating the generating function with
respect to x

∂Gp

∂x
=

t

1−2xt + t2ð Þ3=2
=

t

1−2xt + t2ð Þ
X∞
l= 0

Pl xð Þt l =
X∞
l= 0

Pl
0 xð Þt l

t
X∞
l= 0

Pl xð Þt l = 1−2xt + t2ð Þ
X∞
l= 0

Pl
0 xð Þt l

ð13.2.17Þ

Hence, after equating identical powers of t,

P0
l+ 1 xð Þ−2xP0

l xð Þ+P0
l−1 xð Þ =Pl xð Þ ð13.2.18Þ

Differentiating Gp instead with respect to t,

∂Gp

∂t
=

x− t

1−2xt + t2ð Þ3=2
=

x− t

1−2xt + t2ð Þ
X∞
l= 0

Pl xð Þt l =
X∞
l = 0

lPl xð Þt l−1

x− tð Þ
X∞
l= 0

Pl xð Þt l = 1−2xt + t2ð Þ
X∞
l= 0

lPl xð Þt l−1
ð13.2.19Þ

and again equating similar powers of t leads to, where P− 1(x) = 0, P0(x) = 1,

l+ 1ð ÞPl+ 1 xð Þ−2xlPl xð Þ+ l−1ð ÞPl−1 xð Þ= xPl xð Þ−Pl−1 xð Þ
l+ 1ð ÞPl+ 1 xð Þ−x 2l+ 1ð ÞPl xð Þ + lPl−1 xð Þ = 0 ð13.2.20Þ

Differentiating Equation (13.2.20), solving first for P0
l−1 xð Þ and then P0

l+ 1 xð Þ, and then
substituting each equation in turn into Equation (13.2.18) generate the two relations

lPl xð Þ= xPl
0 xð Þ−P0

l−1 xð Þ
l+ 1ð ÞPl xð Þ= −xPl

0 xð Þ+P0
l+ 1 xð Þ ð13.2.21Þ
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Adding these yields a result that can be employed in integration, namely,

2l+ 1ð ÞPl xð Þ =P0
l+ 1 xð Þ−P0

l−1 xð Þ= d

dx
Pl+ 1 xð Þ−Pl−1 xð Þð Þ ð13.2.22Þ

Raising and lowering operators that transform Pl into Pl ± 1 are obtained by replacing,
e.g., l! l − 1 in the second equation of Equation (13.2.21) and substituting for
P0
l−1 xð Þ from the first equation:

Pl−1 xð Þ= xPl xð Þ + 1−x2

l

� �
P0
l xð Þ ð13.2.23Þ

Alternatively, setting l! l + 1 in the first equation and eliminating P0
l+ 1 xð Þ with the

second equation,

Pl+ 1 xð Þ= xPl xð Þ− 1−x2

l+ 1

� �
P0
l xð Þ ð13.2.24Þ

The orthogonality of the Legendre polynomials is insured by the properties of the
Sturm–Liouville equation, while their normalization follows from, recalling that log
(1 + δ) = δ − δ2=2 + δ3=3 +…,

X∞
l,k = 0

t l+ k
ð1
−1
Pl xð ÞPk xð Þdx=

X∞
l= 0

t2l
ð1
−1

Pl xð Þð Þ2dx

=
ð1
−1

1
1 + t2−2xt

dx

= −
1
2t

log 1 + t2−2xt
� ���x = 1

x = −1
= −

1
2t

log
1− tð Þ2
1 + tð Þ2

 !
=
1
t
log

1 + t
1− t

� �

=
1
t
log 1 + tð Þ− log 1− tð Þ½ �= 1

t

X∞
l= 1

t l

l
−1ð Þl+ 1 + 1

� �
= 2
X∞
l= 0

t2l

2l+ 1

ð13.2.25Þ

Equating identical powers of t,

ð1
−1

Pl xð Þð Þ2dx= 2
2l + 1

ð13.2.26Þ

Thus, any function on the interval [−1, 1] can be expanded as

f xð Þ=
X∞
l= 0

ϖlPl xð Þ

ϖl =
2l + 1
2

ð1
−1
f x0ð ÞPl x

0ð Þdx0
ð13.2.27Þ
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Since xj, j = 0, 1,…,m − 1 form a complete basis set for polynomials of orderm − 1 on

[−1, 1] and the m Legendre polynomials of order less than m are orthogonal and

of order less than xm, any polynomial of order less than m can be written as a linear

superposition of the first m Legendre polynomials.

Example

The potential inside a hollow insulating sphere of radius Rwith potential V0 on the
upper half and zero on the lower half is derived by observing that since V(r, x) is
finite within the sphere, di = 0 in Equation (13.2.5). Accordingly, on the surface of
the sphere,

V boundary R,xð Þ =
X∞
l= 0

clR
lPl xð Þ = V0 0 < x < 1

0 −1 < x< 1


ð13.2.28Þ

Equations (13.2.22) and (13.2.27) then yield

X∞
l= 0

clR
l

ð1
−1
Pm xð ÞPl xð Þdx=V0

ð1
0
Pm xð Þdx

X∞
l= 0

clR
l 2
2m + 1

δml

� �
=

V0

2m+ 1

ð1
0

d

dx
Pm+ 1 xð Þ−Pm−1 xð Þð Þdx

ð13.2.29Þ

With P(1) = 1, the recursion relation, Equation (13.2.20) with x = 0 for the lower
limit leads to

cm =
1

2Rm
V0 Pm−1 0ð Þ−Pm + 1 0ð Þð Þ= −

1
2Rm

V0 1 +
m+ 1
m

� �
Pm+ 1 0ð Þ m> 0

ð13.2.30Þ
With these cm values, noting that c0 = V0=2, Equation (13.2.5) becomes

V r,xð Þ = V0

2
1−
X∞
l= 1

2l+ 1
l

� �
r

R

� �l
Pl+ 1 0ð ÞPl xð Þ

 !
ð13.2.31Þ

13.3 SPHERICAL HARMONICS

From a diagram or from Equation (8.1.8), the unit vectors in spherical and rectangular
coordinates are related by

êϕ = − êx sinϕ+ êy cosϕ

êθ = − êz sin θ + cos θ êx cosϕ + êy sinϕ
� �

êr = êz cos θ + sin θ êx cosϕ + êy sinϕ
� � ð13.3.1Þ
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The angular component of the Laplacian operator equals minus 1=r2 times the
square of the dimensionless operator, proportional to the quantum mechanical
angular momentum operator,

L
!
= − i r

! ×r! = − i

êr êθ êϕ

r 0 0

∂

∂r

1
r

∂

∂θ

1
r sin θ

∂

∂ϕ

���������

���������
= êθ

i

sin θ
∂

∂ϕ|fflfflfflffl{zfflfflfflffl}
Lθ

+ êϕ − i
∂

∂θ

� �
|fflfflfflffl{zfflfflfflffl}

Lϕ

ð13.3.2Þ

Hence, inserting Equation (13.3.1),

L
!
= i êx sinϕ− êy cosϕ
� � ∂

∂θ
+ êx cosϕ + êy sinϕ
� � cos θ

sin θ
∂

∂ϕ
− êz

∂

∂ϕ

� �

= i êx sinϕ
∂

∂θ
+ cosϕcot θ

∂

∂ϕ

� �
+ êy − cosϕ

∂

∂θ
+ sinϕcot θ

∂

∂ϕ

� �
− êz

∂

∂ϕ

� �

=L
!
x + L

!
y + L

!
z ð13.3.3Þ

where in Cartesian components

Lx = − i y
∂

∂z
−z

∂

∂y

� �
, Ly = − i z

∂

∂x
−x

∂

∂z

� �
, Lz = − i x

∂

∂y
−y

∂

∂x

� �
ð13.3.4Þ

while calculating ∂êϕ=∂ϕ and the analogous derivatives directly from Equa-
tion (13.3.1),

L2 = L
!� L! = − êθ

1
sin θ

∂

∂ϕ
− êϕ

∂

∂θ

� �
� êθ

1
sin θ

∂

∂ϕ
− êϕ

∂

∂θ

� �

= −
1

sin2θ

∂2

∂ϕ2 +
∂2

∂θ2
+

1

sin2θ
êθ � ∂êθ

∂ϕ|fflfflffl{zfflfflffl}
0

∂

∂ϕ
−

1
sin θ

êθ � ∂êϕ
∂ϕ|fflfflffl{zfflfflffl}

− cos θ

∂

∂θ

8>><
>>:

−
1

sin θ
êϕ � ∂êθ

∂θ|fflfflffl{zfflfflffl}
0

∂

∂ϕ
+ êϕ � ∂êϕ

∂θ|{z}
0

∂

∂θ

9>>=
>>;

= −
1

sin θ
∂

∂θ
sin θ

∂

∂θ

� �
+

1

sin2θ

∂2

∂ϕ2

 !
ð13.3.5Þ
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However, since in − r
!×r!
� �

r
!×r!
� �

the first gradient acts on both the second

r
! (denoted temporarily below as ~r

!
) and the second r! , distinguishing these

two operations by subscripts and applying A
!
× B

!� �
� C

!
× D

!� �
= A

!�C!
� �

B
! �D!
� �

−

A
!�D!
� �

B
! �C!
� �

yields

−L2 = r
!×r!

~r
!

� �
� ~r

!
× r!

� �
+ r

!×r!r!
� �

� r
!× r!
� �

= ri~ri r~rð Þjr
!
j− r

!�r!
� �

~r
!�r!

~r
!

� �
+ r2r2− r

!�r!r!
� �

r
!�r!

= ri rjri
� �
|fflfflffl{zfflfflffl}

δji

rj− r! � r!
� �
|fflfflfflffl{zfflfflfflffl}

3

r
!�r!
� �

+ r2r2−r2
∂

∂r2

= r2r2−r2
∂

∂r2
−2r

∂

∂r

= r2r2−
∂

∂r
r2

∂

∂r

ð13.3.6Þ

Therefore, where the second terms equal − l(l + 1)=r2, if separation of variables can be
applied,

r2 =
1
r2

∂

∂r
r2

∂

∂r
−
L2

r2
=
1
r2

∂

∂r
r2

∂

∂r
+
1
r2

1
sin θ

∂

∂θ
sin θ

∂

∂θ

� �
+

1

sin2θ

∂2

∂ϕ2

 !
ð13.3.7Þ

For nonaxially symmetric problems, separating variables in the Laplace equation
for spherical coordinates V(r, θ, ϕ) = R(r)Y(θ, ϕ) with Rl(r)≈ crl + dr− (l + 1) as in
Equation (13.2.2) leads to

sin θ
∂

∂θ
sin θ

∂Y

∂θ

� �
+ l l+ 1ð Þsin2θY = −

∂2Y

∂ϕ2 ð13.3.8Þ

Further setting Ylm θ,ϕð Þ =Pm
l θð ÞΦm ϕð Þ and introducing the separation constant

results in

d2Φm ϕð Þ
dϕ2 = −m2Φm ð13.3.9Þ

with the general solution

Φm ϕð Þ= e1eimϕ + e2e− imθ ð13.3.10Þ
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If the problem region extends from ϕ = 0 to ϕ = 2π, m must be an integer to ensure
that Φm(ϕ) is single valued. The associated Legendre polynomials Pm

l θð Þ then obey
the equation

1
sin θ

∂

∂θ
sin θ

∂Pm
l θð Þ
∂θ

� �
+ l l+ 1ð ÞPm

l −
m2

sin2θ
Pm
l = 0 ð13.3.11Þ

However, the Ylm(θ,ϕ) can again be conveniently determined through raising and low-
ering (ladder) operators that relate Ylm ± 1(θ,ϕ) and Ylm(θ,ϕ). From Equations (13.3.8)
and (13.3.9), the Ylm(θ,ϕ) are simultaneous eigenfunctions of L2 and Lz with

LzYlm θ,ϕð Þ=mYlm θ,ϕð Þ
L2Ylm θ,ϕð Þ= l l+ 1ð ÞYlm θ,ϕð Þ ð13.3.12Þ

The factor of e± iϕ required to compensate for the differing ϕ dependence of Ylm and
Ylm ± 1 is obtained by combining Lx and Ly according to

L± ≡ Lx ± iLy = ± cosϕ ± isinϕð Þ ∂
∂θ

+ icot θ cosϕ ± isinϕð Þ ∂

∂ϕ

= e± iϕ ±
∂

∂θ
+ icot θ

∂

∂ϕ

� � ð13.3.13Þ

In particular, since, e.g.,

Lz, Lx½ � = − x
∂

∂y
−y

∂

∂x

� �
y
∂

∂z
−z

∂

∂y

� �
+ y

∂

∂z
−z

∂

∂y

� �
x
∂

∂y
−y

∂

∂x

� �
= z

∂

∂x
−x

∂

∂z

� �
= iLy

ð13.3.14Þ

or, after performing the cyclic substitutions x! y! z! x,

Li,Lj
� �

= iεijkLk

Lz,L ±½ � = ±L±

ð13.3.15Þ

which in turn implies, L±Ylm = c±Ylm ± 1 for some constants c+ and c− from

Lz L± Ylmð Þ= m± 1ð Þ L± Ylmð Þ= L± Lz ± L±ð ÞYlm ð13.3.16Þ

To determine these normalization constants, note first that

L2 = L2x + L
2
y + L

2
z =

1
2

Lx + iLy
� �

Lx− iLy
� �

+ Lx− iLy
� �

Lx + iLy
� �� �

+ L2z

=
1
2

L + L− + L−L+f g + L2z
ð13.3.17Þ
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and

L+ , L−½ �= Lx + iLy,Lx− iLy
� �

= − i Lx, Ly
� �

+ i Ly,Lx
� �

= 2Lz ð13.3.18Þ

yield

L2 = L+ L− +Lz Lz−1ð Þ =L−L+ + Lz Lz + 1ð Þ ð13.3.19Þ

Since the Ylm are normalized according to unity according to, where Ylm is denoted
by jl,mi,

l,mjl0,m0h i≡
ð
Y*
lm θ,ϕð ÞYl0m0 θ,ϕð ÞdΩ≡

ð
Y*
lm θ,ϕð ÞYl0m0 θ,ϕð Þsin θdθdϕ= δll0δmm0

ð13.3.20Þ
Equation (13.3.19) together with the hermiticity of L

!
(e.g.,

Ð
f * r

!� �
Lxg r

!� �
d3x =Ð

Lxf r!
� �� �

*g r!
� �

d3x, after partial integration), which implies L†± = L+− , determines
the normalization of Ylm + 1 relative to that of Ylm from

l l+ 1ð Þ−m m−1ð Þ½ � l,mjl,mh i= c2+ l,mh jL− l,m+ 1j i l,m+ 1h jL+ l,mj i
= c2+ l,m+ 1h jL+ l,mj ij j2

= c2+ l,m+ 1jl,m + 1h i2
ð13.3.21Þ

From this and a similar calculation for c−, where the upper (+) sign is chosen by
convention,

c+ = ± l l+ 1ð Þ−m m+ 1ð Þð Þ1=2 = ± l−mð Þ l+m+ 1ð Þð Þ1=2

c− = ± l l+ 1ð Þ−m m−1ð Þð Þ1=2 = ± l+mð Þ l−m+ 1ð Þð Þ1=2
ð13.3.22Þ

The spherical harmonic functions can be obtained from the raising and lowering
operators since

L+ Yll = l l + 1ð Þ− l l+ 1ð Þð Þ1=2Yll + 1 = 0 ð13.3.23Þ
is equivalent to

eiϕ
∂

∂θ
+ icot θ

∂

∂ϕ

� �
Pl
l θð Þeilϕ = 0 ð13.3.24Þ

Hence,

∂

∂θ
− lcot θ

� �
Pl
l θð Þ = 0 ð13.3.25Þ

and therefore,

1
cos θ

∂

∂θ
−

l

sin θ

� �
Pl
l θð Þ = ∂

∂ sin θð Þ −
l

sin θ

� �
Pl
l θð Þ= 0 ð13.3.26Þ
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with the solution

Pl
l θð Þ=Al sin

lθ ð13.3.27Þ

The absolute normalization factor, Al, for Yll is then, where n !! denotes n(n − 2)
(n − 4)…,

Al = 2π
ðπ
0
sin2l+ 1θdθ

� �−1
2

= ± 4π
2l!!

2l+ 1ð Þ!!
� �−1=2

ð13.3.28Þ

where the recursion relation

ðπ
0
sin2lθ|fflffl{zfflffl}
g xð Þ

sin θ|ffl{zffl}
h0 xð Þ

dθ = 2l
ðπ
0
sin2l−1θcos θcos θ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

1− sin2θ

dθ− sin2lθcos θ
��π
0

2l+ 1ð Þ
ðπ
0
sin2l+ 1θdθ = 2l

ðπ
0
sin2l−1θdθ

ð13.3.29Þ

together with
ðπ
0
sin θdθ = 2 is employed.

Example

From

Y1 ± 1 θ,ϕð Þ= +−
ffiffiffiffiffi
3
8π

r
sin θe ± iϕ ð13.3.30Þ

where the sign of Y11 is set by convention, it follows that

l+mð Þ l−m + 1ð Þð Þ1=2Y10 =
ffiffiffiffiffiffiffiffi
2 �1

p
Y10 = L−Y11

= −

ffiffiffiffiffi
3
8π

r
e− iϕ −

∂

∂θ
+ icot θ

∂

∂ϕ

� �
sin θeiϕ ð13.3.31Þ

leading to

Y10 = −
1ffiffiffi
2

p
ffiffiffiffiffi
3
8π

r
− cos θ− cos θð Þ =

ffiffiffiffiffi
3
4π

r
cos θ ð13.3.32Þ

Functions of angular coordinates can be expanded in spherical harmonics as

f θ,ϕð Þ =
X∞
l= 0

Xl
m = − l

AlmYlm θ,ϕð Þ, Alm =
ð
Y*
lm θ0,ϕ0ð Þf θ0,ϕ0ð ÞdΩ0 ð13.3.33Þ
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from which the general solution to the Laplace equation in spherical coordinates

V r,θ,ϕð Þ=
X∞
l= 0

Xl
m= − l

Almr
l +

Blm

rl+ 1

� �
Ylm θ,ϕð Þ ð13.3.34Þ

can be determined, where Alm = 0 for l > 0 for functions V that approach zero at
infinity, while Blm = 0 if V is finite at r = 0. If V is specified on two concentric shells,
twice as many constants are required to match both sets of boundary conditions, and
all Alm and Blm can appear.

Some additional useful properties of the spherical harmonics are

Yl0 θ,ϕð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
2l + 1
4π

r
Pl cos θð Þ ð13.3.35Þ

Ylm 0,ϕð Þ= Ylm π,ϕð Þ = 0 for m 6¼ 0 ð13.3.36Þ

Yl, −m θ,ϕð Þ = −1ð ÞmY*
lm θ,ϕð Þ ð13.3.37Þ

Upon inversion through the coordinate system origin,

Ylm π−θ,π +ϕð Þ= −1ð ÞlYlm θ,ϕð Þ ð13.3.38Þ

Finally, the addition theorem states, where γ is the angle between the directions (θ, ϕ)
and (θ0, ϕ0)

Pl cos γð Þ= 4π
2l+ 1

Xl
m= − l

Y*
lm θ0,ϕ0ð ÞYlm θ,ϕð Þ ð13.3.39Þ

which takes the form for γ = 0

Xl
m= − l

Ylm θ,ϕð Þj j2 = 2l+ 1
4π

ð13.3.40Þ

13.4 BESSEL FUNCTIONS

The Laplace equation in cylindrical coordinates

r2V =
1
r

∂

∂r
r
∂V

∂r

� �
+
1
r2
∂2V

∂ϕ2 +
∂2V

∂z2
= 0 ð13.4.1Þ
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is separated with V = R(r)Φ(ϕ)Z(z) leading to

1
rR

∂

∂r
r
∂R

∂r

� �
+

1
r2Φ

∂2Φ
∂ϕ2 +

1
Z

∂2Z

∂z2
= 0 ð13.4.2Þ

Introducing the separation constants (note that the dimension of k is [1=D]), where the
sign of k2 is chosen such that the solution for k 6¼ 0 varies sinusoidally in both ϕ and r,

∂2Φ
∂ϕ2 = −m2Φ

∂2Z

∂z2
= k2Z ð13.4.3Þ

If the problem domain extends over the entire interval ϕ = [0, 2π], for the solution to
be single valued m must be an integer while f0 = 0 below

Φ ϕð Þ= e0 + f0ϕ m = 0

em sinmϕ + fm cosmϕ m 6¼ 0

(
ð13.4.4Þ

The resulting radial function Rm(kr) is then the ordinary solution of the Bessel equation

1
r

∂

∂r
r
∂R

∂r

� �
+ k2−

m2

r2

� �
R = 0 ð13.4.5Þ

or, equivalently in terms of the dimensionless variable ρ = kr,

∂

∂ρ
ρ
∂Rm ρð Þ
∂ρ

� �
+ ρ−

m2

ρ

� �
Rm ρð Þ = ρ∂

2Rm ρð Þ
∂ρ2

+
∂Rm ρð Þ
∂ρ

+ ρ−
m2

ρ

� �
Rm ρð Þ = 0

ð13.4.6Þ
If k = 0 in Equation (13.4.5), Z(z) = c0 + d0z, while

Rm rð Þ = g0 + h0 lnρ m= 0

gmρm + hmρ−m m 6¼ 0

(
ð13.4.7Þ

yielding solutions of the form

V r,θ,zð Þ = c0 + d0zð Þ g0 + h0 lnρ +
X∞
m = 1

em sinmθ + fm cosmθð Þ gmρ
m + hmρ

−mð Þ
( )

ð13.4.8Þ
For k 6¼ 0, as ρ! 0, the term ρ −m2=ρ≈ −m2=ρ in the Bessel equation resulting in
Equation (13.4.7). Hence, a series expansion of solutions that are finite and vary as
ρm for ρ! 0 is obtained by setting

Rm ρð Þ = ρm
X∞
n = 0

a mð Þ
n ρn ð13.4.9Þ
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for which

X∞
n= 0

n+mð Þ n +m−1ð Þa mð Þ
n ρn+m−1 +

X∞
n= 0

n +mð Þa mð Þ
n ρn+m−1

+
X∞
n = 0

a mð Þ
n ρn+m + 1−m2

X∞
n= 0

a mð Þ
n ρn+m−1 = 0

ð13.4.10Þ

Equating terms with equal powers of ρ generates the recursion relation

n+mð Þ n +m−1ð Þ + n+mð Þ−m2
� �

a mð Þ
n = n +mð Þ2−m2

h i
a mð Þ
n = n2 + 2nm

� �
a mð Þ
n = −a mð Þ

n−2

ð13.4.11Þ

Since the coefficient of a mð Þ
0 , and hence a mð Þ

−2 , equals zero, the series terminates.
Further,

a mð Þ
2n =

−1
2n 2n + 2mð Þ

−1
2n−2ð Þ 2n−2 + 2mð Þa

mð Þ
2n−4

= −1ð Þn 1
2nn!

� �
1

2n n +mð Þ n+m−1ð Þ� � � m+ 1ð Þ
� �

a mð Þ
0

ð13.4.12Þ

The convention

a mð Þ
0 ≡

1
2mm!

ð13.4.13Þ

simplifies the series coefficients yielding the Bessel functions

Jm ρð Þ≡Rm ρð Þ = ρm
X∞
n = 0

a mð Þ
2n ρ2n =

X∞
n = 0

−1ð Þn
n! n+mð Þ!

ρ

2

� �m+ 2n
ð13.4.14Þ

which are finite for all ρ. The corresponding solution J−m, equals (−1)
m times Jm(ρ)

since Equation (13.4.11) results in a −mð Þ
2m = ∞ unless the lowest-order term starts at n

= 2m, reproducing the above series. For noninteger m, however, (n +m)! is replaced
by Γ(n +m + 1), the power series does not terminate at n = 0, and Jm and J−m are
linearly independent. As a result, the second independent solution for integer m is
therefore given by the linear combination c(Jμ + (−1)m + 1J− μ) of the two noninteger
solutions as μ!m. The components of J± μ that are identical with Jm cancel, leaving
the orthogonal Neumann function Nm(ρ).

A generating function for Jm can be constructed from the solution exp(iky − kz)
to the three-dimensional Laplace equation in which k denotes the separation constant
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in Equation (13.4.3). As this solution is finite at ρ = 0 and oscillates in ρ and ϕ, it can
be expressed as

e−kz+ iky = e−kzeiρsinϕ = e−kz
X∞

m = −∞
gmJm ρð Þeimϕ ð13.4.15Þ

From the orthogonality of the complex exponential functions,

2πgmJm ρð Þ=
ð2π
0
e− imϕeiρsinϕdϕ ð13.4.16Þ

Equating the coefficients of the leading ρm term as ρ! 0 of the power series expan-
sion of both sides,

gm
ρ

2

� �m 1
m!

=
1
2π

iρð Þm
m!

ð2π
0
e− imϕ sinϕð Þmdϕ ð13.4.17Þ

Since the exp(imϕ)=(2i)m term appearing in the expansion of sinmϕ = (exp(ϕ) +
exp(−ϕ))m cancels the exp(−imϕ) angular variation of the integrand, gm = 1 yielding
the generating function

eiρsinϕ =
X∞

m = −∞
Jm ρð Þeimϕ ð13.4.18Þ

Equivalently with t = exp(iϕ) so that sin ϕ = (t + 1=t)=2i,

e
ρ
2t t2 −1ð Þ =

X∞
l= −∞

Jm ρð Þtm ð13.4.19Þ

From the generating function, recursion relations can be derived for the Bessel
functions and their derivatives. In particular, taking the derivative of both sides of
the above equation with respect to ρ,

1
2

t−
1
t

� �
e
ρ
2 t−1

tð Þ = 1
2

X∞
m = −∞

Jm ρð Þ tm + 1− tm−1
� �

=
X∞

m= −∞

dJm ρð Þ
dρ

tm ð13.4.20Þ

Equating the coefficients of the tm terms yields the recursion relation

Jm−1 ρð Þ−Jm + 1 ρð Þ= 2dJm ρð Þ
dρ

ð13.4.21Þ

If the generating function is instead differentiated with respect to t,

ρ

2
1 +

1
t2

� �
e
ρ
2 t−1

tð Þ = ρ

2

X∞
m = −∞

Jm ρð Þ tm + tm−2
� �

=
X∞

m= −∞
mJm ρð Þtm−1 ð13.4.22Þ
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which gives after identifying the coefficients of tm − 1,

Jm−1 ρð Þ+ Jm+ 1 ρð Þ = 2m
ρ
Jm ρð Þ ð13.4.23Þ

Subtracting Equation (13.4.21) from Equation (13.4.23) yields

Jm+ 1 ρð Þ = m

ρ
Jm ρð Þ− dJm ρð Þ

dρ
ð13.4.24Þ

Multiplying both sides by ρ−m and combining terms on the right-hand side,

Jm + 1 ρð Þ
ρm

= −
d

dρ

Jm ρð Þ
ρm

� �
ð13.4.25Þ

Hence, J1(ρ) = −dJ0(ρ)=dρ for m = 0, while, after iterating,

Jm
ρm

= −
1
ρ

d

dρ

Jm−1

ρm−1

� �
=

1
ρ

∂

∂ρ

� �2 Jm−2

ρm−2

� �
=…= −1ð Þm 1

ρ

d

dρ

� �m
J0 ρð Þ ð13.4.26Þ

That Jm and Nm are cylindrical analogues of cos and sin follows from the ρ!∞
limit of Equation (13.4.5),

∂2R

∂ρ2
+
1
ρ

∂R

∂ρ
+ 1−

m2

ρ2

� �
R≈

d2R

dρ2
+R= 0 ð13.4.27Þ

for which R! χ cos(ρ + δ). This is improved by setting R≈ exp(−iρ)ρα in the Bessel
equation,

�−ρα−2iαρα−1−
i

ρ
ρα + �ρ

α +O ρα−2
� �

= 0 ð13.4.28Þ

so that neglecting nonleading terms proportional to ρα − 2 yields α = −1=2. Thus, the
following cylindrical functions can be constructed and employed similarly to the spe-
cified analogue harmonic and exponential functions, where underlined quantities
remain finite.

Harmonic
function

Corresponding cylindrical
function Behavior as ρ! 0 Behavior as ρ!∞

cos ρ, sin ρ Ordinary Bessel function Jm(ρ) 1
Γ m+ 1ð Þ

ρ
2

� �m ffiffiffiffi
2
πρ

q
cos ρ− mπ

2 − π
4

� �

sin ρ, cos ρ Neumann function Nm(ρ) 2
π

ln
ρ

2
+ 0:577

� �
m= 0

−
Γ mð Þ
π

2
ρ

� �m

m> 0

8>><
>>:

ffiffiffiffi
2
πρ

q
sin ρ− mπ

2 − π
4

� �
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(continued)

Harmonic
function

Corresponding cylindrical
function Behavior as ρ! 0 Behavior as ρ!∞

eiρ = cos ρ +
i sin ρ

Hankel function of the first
kind H 1ð Þ

m ρð Þ = Jm ρð Þ + iNm ρð Þ
iNm(ρ)

ffiffiffiffi
2
πρ

q
ei ρ−mπ

2 −π
4ð Þ

e− iρ = cos ρ −
i sin ρ

Hankel function of the second
kind H 2ð Þ

m ρð Þ = Jm ρð Þ− iNm ρð Þ
− iNm(ρ)

ffiffiffiffi
2
πρ

q
e− i ρ−mπ

2 −π
4ð Þ

cosh ρ, sinh ρ Modified Bessel function of the
first kind Im(ρ) = i−mJm(iρ)

1
Γ m+ 1ð Þ

ρ
2

� �m 1ffiffiffiffiffiffi
2πρ

p eρ

e− ρ Modified Bessel function of the
second kind
Km ρð Þ = π

2 i
m+ 1H 1ð Þ

m iρð Þ

− ln
ρ

2
−0:577 m = 0

Γ mð Þ
2

2
ρ

� �m

m > 0

8>><
>>:

ffiffiffiffi
π
2ρ

q
e−ρ

The recursion relations are slightly modified for the Im and Km functions to reflect
the differing normalization. Thus, replacing ρ by iρ in Equation (13.4.21) and apply-
ing Jm(iρ) = imIm(ρ) results in

Im−1 ρð Þ− Im + 1 ρð Þ= 2m
ρ
Im ρð Þ ð13.4.29Þ

Further, all Jm and Nm are orthogonal from the Sturm–Liouville theory, while for each
m, the Jm(rxmn=L) with xmn the nth zero of Jm(ρ) are orthogonal on [0, L], similarly to
sin(xpn=L) with pn = nπ the nth zero of sin x, according to

ðL
0
Jm xmn

r

L

� �
Jm xml

r

L

� �
rdr = δnl

L2

2
Jm + 1 xmlð Þð Þ2 ð13.4.30Þ

If the problem domain includes the origin as a regular (nonsingular) point, only Jm
or Im are present, while if infinity is a regular point, Im is excluded. When
V boundary(z, ϕ) is specified on the cylinders r = r<, r> and is zero on the remaining
surfaces, the separation constant k2 < 0, and the solution takes the form of a sum
of products of functions of the form of an sin knz + bn cos knz with cm exp(imϕ) +
bm exp(imϕ) and dmnIm(knr) + emnKm(knr), where all dmn = 0 and emn = 0 for r>
=∞ and r< = 0, respectively. The potential along the cylindrical boundaries can
in this manner be expressed in a two-dimensional Fourier series. When
V boundary(r, ϕ) instead differs from zero on one of the two planes z = a1,2, the solu-
tion inside the region r< < r < r> requires k

2 > 0 and is composed of a sum over pro-
ducts of cm exp(imϕ) + bm exp(imϕ) with dmnJm(αmnr) + emnNm(αmnr) and a sinh
(αnmz) + b cosh(αmnz), where conventionally emn is set to zero if r> =∞ or r< = 0.
The expansion in Jm and Nm with harmonic functions of ϕ provides an analogy
to a two-dimensional Fourier series.
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Example

For the potential inside a cylinder of length π over which Vboundary = 0 except for
Vboundary(R, ϕ, z) = 3 sin(4ϕ)sin(z), I(r) replaces sinh x for the rectangular problem
so that

V r,ϕ,zð Þ=
X∞
m= 0

X∞
n= 0

αmn cos nz+ βmn sin nzð Þ Amn cosmϕ +Bmn sinmϕð ÞIm nrð Þ
ð13.4.31Þ

Setting V(R, ϕ, z) = Vboundary(R, ϕ, z) and employing the orthogonality of the
harmonic functions,

V r,z,ϕð Þ= 3
I4 Rð Þ I4 rð Þsin zsin 4ϕð Þ ð13.4.32Þ

13.5 SPHERICAL BESSEL FUNCTIONS

The Bessel functions of half-integer argument termed the spherical Bessel functions
arise, e.g., in spherical solutions of the wave equation

r2E r, tð Þ− 1
v2
∂2E r, tð Þ

∂t2
= 0 ð13.5.1Þ

Separating variables yields a linear superposition of solutions Elm,ω r
!, t
� �

=
Rl rð ÞYlm ϕ,θð ÞTω tð Þ with T 00(t) = −ω2T(t) and k2 =ω2=v2. Accordingly, Tω(t) =
exp(iωt) and

1
r

∂2

∂r2
rRl rð Þð Þ+ k2−

l l+ 1ð Þ
r2

� �
Rl rð Þ= 0 ð13.5.2Þ

The above equation can be recast as the Bessel equation by substituting Rl =Zl=
ffiffi
r

p
,

which ensures a r−1/2 behavior of Zl as r!∞, consistent with the Bessel function
properties

1ffiffi
r

p ffiffi
r

p
Z 00
l + 2

1
2

� �
Zl0ffiffi
r

p +
1
2

� �
−
1
2

� �
Zl
r3=2

� �
+ k2−

l l+ 1ð Þ
r2

� �
Zl =

Z 00
l +

1
r
Zl

0 + k2− l+
1
2

� �2 1
r2

" #
Zl = 0

ð13.5.3Þ

In terms of the dimensionless variable ρ = kr, the normalized spherical Bessel
function is therefore defined and normalized such that (recall that Jl ρð Þ!ffiffiffiffiffiffiffiffiffiffi
2=πρ

p
cos ρ− lπ=2−π=4ð Þ for large ρ)

jl ρð Þ=
ffiffiffiffiffi
π

2ρ

r
Zl ρð Þ = 1ffiffiffi

ρ
p Jl+ 1=2 ρð Þ ð13.5.4Þ
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with similar formulas for the spherical Neumann and Hankel functions. For example,
as r!∞,

h 1ð Þ
l ρð Þ =

ffiffiffiffiffi
π

2ρ

r
H 1ð Þ

l+ 1=2 ρð Þ! − ið Þl+ 1 e
iρ

ρ
ð13.5.5Þ

The recursion relations among the spherical Bessel functions are obtained from those
of the standard Bessel functions, e.g.,

jl+ 1 + jl−1 =
ffiffiffiffiffi
π

2ρ

r
Jl+ 3=2 + Jl−1=2
� �

=
2 l + 1

2

� �
ρ

ffiffiffiffiffi
π

2ρ

r
Jl+ 1

2
=
2l+ 1
ρ

jl ð13.5.6Þ

jl+ 1− jl−1 =
ffiffiffiffiffi
π

2ρ

r
−2J 0l+ 1=2
� �

= −
2ffiffiffi
ρ

p ffiffiffi
ρ

p
jl

� �0
= −2j0l−

jl
ρ

ð13.5.7Þ

Eliminating jl from the two above equations yields again

l+ 1ð Þjl+ 1 ρð Þ− ljl−1 ρð Þ = − 2l+ 1ð Þj0l ð13.5.8Þ

while eliminating jl − 1 from Equations (13.5.6) and (13.5.8) regenerates the standard
Bessel function ladder relation of Equation (13.4.24)

jl+ 1 =
l

ρ
jl− jl

0 ð13.5.9Þ

Consequently, as also follows directly from Equation (13.4.25) with m! l − 1=2,
Equation (13.5.9) leads to the identical Rodrigues-type formula as for the Bessel
functions

jl = −ρl−1
d

dρ

jl−1
ρl−1

� �
= −1ð Þρl 1

ρ

∂

∂ρ

� �
1

ρl−1
jl−1

� �
=…= −ρð Þl 1

ρ

d

dρ

� �l

j0 ρð Þ

ð13.5.10Þ

Since for l = 0 Equation (13.5.1) can be rewritten as

1
ρ

∂2

∂ρ2
ρRð Þ= −R ð13.5.11Þ

for which the general solution is given by ρR = A cos ρ + B sin ρ, the normalized
solution that remains finite at the origin (by l’Hopital’s rule) is

j0 ρð Þ= sin ρ
ρ

ð13.5.12Þ
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from which all successive jl(ρ) follow from Equation (13.5.10). The second set of
spherical functions, nl(ρ), often termed spherical Neumann functions are instead gen-
erated by employing −cos ρ in place of sin ρ above. Appropriate linear combinations

of these then yield the spherical Hankel functions, h 1ð Þ
l = jl + inl and h 2ð Þ

l = jl− inl. The
lowest-order spherical functions are consequently

j0 =
sin ρ
ρ

j1 =
sin ρ
ρ2

−
cos ρ
ρ

n0 = −
cos ρ
ρ

n1 = −
cos ρ
ρ2

−
sin ρ
ρ

h 1ð Þ
0

h 2ð Þ
0

=
e± iρ

± iρ

h 1ð Þ
1

h 2ð Þ
1

= −
e ± iρ

ρ
1 ±

i

ρ

� �
ð13.5.13Þ

For large ρ, noting that the 1=ρ term in jn is obtained by repeatedly differentiating
sin ρ in j0,

jn ρð Þ! 1
ρ
sin ρ−

nπ

2

� �
ð13.5.14Þ

As ρ! 0, the leading ρl term results from applying Equation (13.5.10) to the ρ2l term
in the power series expansion of sin ρ=ρ, as can be easily understood by applying, e.g.,
[(1=ρ)d=dρ]2 to (x − x3=3 ! + x5=5 ! +…)=x. Hence,

jl ! −ρð Þl 1
ρ

d

dρ

� �l
−1ð Þl ρ2l

2l+ 1ð Þ! = ρ
l 1
ρ

d

dρ

� �l−1 ρ2l−2 2lð Þ
2l + 1ð Þ! =…=

ρl

2l+ 1ð Þ!! ð13.5.15Þ

A plane wave can be expanded as, with x = cos θ,

eikz = eiρcos θ = eiρx =
X∞
l= 0

cljl ρð ÞPl xð Þ ð13.5.16Þ

After employing the orthogonality of the Pl, the cl are determined from the ρ! 0
behavior of

lim
ρ!0

cl jl ρð Þ = cl ρl

2l+ 1ð Þ!! =
2l + 1
2

� �
lim
ρ!0

ð1
−1
eiρxPl xð Þdx

=
2l+ 1
2

� �
lim
ρ!0

ð1
−1

X∞
n= 0

iρn=n!
Xn
j= 0

anjPnj xð Þ
( )

Pl xð Þdx
ð13.5.17Þ

where the anj are obtained by expanding xn in terms of the Legendre polynomials of
order ≤ n. From the orthogonality of the Pn(x), the leading nonzero term in the integral
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on the right-hand side of Equation (13.5.17) occurs when n = l for which the above
equation simplifies to

cl
ρl

2l+ 1ð Þ!! = i
l ρ

l

l!

2l + 1
2

� �ð1
−1
Pl xð Þxldx ð13.5.18Þ

However, from Equation (13.2.13), the coefficient of xl in Pl(x), which is obtained
by taking dl=dxl of the single x2l term arising from (x2 − 1)l, equals (1=2ll !)((2l) !=l !).
Hence,

cl
2lð Þ!!ρl

2l+ 1ð Þ! l!ð Þ = i
lρ

l

l!

2l+ 1
2

� �ð1
−1
Pl xð Þ 2l l!ð Þ2

2lð Þ! Pl xð Þ +
Xl−1
n= 0

alnPl xð Þ
" #

dx ð13.5.19Þ

This yields finally cl = il(2l + 1) after applying (2l) !! = 2ll !. Accordingly,

eikz =
X∞
l= 0

il 2l + 1ð Þjl ρð ÞPl cos θð Þ ð13.5.20Þ

Finally, if ρl + 1/2,n is the nth zero of Jl + 1/2(ρ) = 0, then from Equation (13.4.30),

ðL
0
jl ρl+ 1=2,n

r

L

� �
jl ρl+ 1=2,m

r

L

� �
r2dr = δnm

L3

2
j0l ρl+ 1=2,m

� �� �2

= δnm
L3

2
jl+ 1 ρl+ 1=2,m

� �� �2
ð13.5.21Þ
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14
INTEGRAL EQUATIONS AND
THE CALCULUS OF VARIATIONS

While a differential equation associates a function with its derivatives, an integral
equation relates a function to its integrals (integrodifferential equations contain
both integrals and derivatives). As integral equations incorporate boundary condi-
tions, they can in certain cases be solved by determining their global extrema through
the calculus of variations, which converts the problem into the solution of a local dif-
ferential equation.

14.1 VOLTERRA AND FREDHOLM EQUATIONS

Fredholm equations contain an integral with constant limits, while the integration
limits are variables in Volterra equations. The equation is termed an integral equation
of the first (second) kind if the function to be determined appears only inside and
both inside and outside the integral, respectively.

Example

If f(x) is specified, the Fourier transform

f xð Þ= 1ffiffiffiffiffi
2π

p
ð∞

−∞
f kð Þe− ikxdk ð14.1.1Þ
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represents a Fredholm equation of the first kind for f(k) where exp ikxð Þ= ffiffiffiffiffi
2π

p
is

termed the kernel of the equation and is generally designated by K(x, t), while

ϕ xð Þ= f xð Þ+
ðx
a
K x, tð Þϕ tð Þdt ð14.1.2Þ

where f(x) is known and ϕ(x) is the function to be determined is a Volterra equation
of the second kind.

Boundary conditions, e.g., ϕ(a) = f(a) in Equation (14.1.2), are implicit in the above
formulas. In general, differential equations subject to initial conditions transform into
Volterra integral equations, while if boundary conditions are instead specified, Fred-
holm equations result.

Example

A differential equation such as (D2 + 1)y = 0 with boundary conditions
y 0ð Þ = y0,y0 0ð Þ= y00 is transformed into a Volterra equation of the second kind
for y(x) by incorporating the two boundary conditions through two lower integra-
tion limits according to

y0−y00 = −

ðx
0
ydx0

y = y00x + y0−
ðx
0

ðx0
0
y x00ð Þdx00dx0

ð14.1.3Þ

Interchanging the order of integration then recasts the equation into a Volterra form

y= y00x+ y0−
ðx
0
y x00ð Þ

ðx
x0
dx0

� �
dx00

= y00x + y0−
ðx
0
y x00ð Þ x−x00ð Þdx00

ð14.1.4Þ

That this expression satisfies the differential equation and boundary conditions

follows from
d

dx

ðx
x0

f x,x0ð Þdx0 = f x,xð Þ +
ðx
x0

df x,x0ð Þ
dx

dx0

Integral equations are often solved through iteration. For example, if the magnitude of
the integral is small in Equation (14.1.2) compared to the remaining terms, f(t) can
first be substituted for ϕ(t). Repeating this procedure for the modified ϕ(t) leads to
the series
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ϕ 0ð Þ xð Þ = f xð Þ

ϕ 1ð Þ xð Þ = f xð Þ +
ðx
a
K x, tð Þϕ 0ð Þ tð Þdt = f xð Þ+

ðx
a
K x, tð Þf tð Þdt

ϕ 2ð Þ xð Þ = f xð Þ +
ðx
a
K x, tð Þϕ 1ð Þ tð Þdt

= f xð Þ+
ðx
a
K x, tð Þf tð Þdt +

ðx
a
K x, tð Þ

ðt
a
K x, t0ð Þf t0ð Þdt0dt

ð14.1.5Þ

Integral equations can be solved in special cases such as that of separable kernels such

as K x, tð Þ =
X

i
Xi xð ÞTi tð Þ and can also generally be converted to matrix equations by

discretizing the integration variable and solved numerically.

14.2 CALCULUS OF VARIATIONS THE
EULER-LAGRANGE EQUATION

Variational calculus enables the determination of the extrema of integral expressions
typified by

I =
ðx! t2ð Þ

x
!
t1ð Þ,P

f t,xi tð Þ, _xi tð Þð Þdt ð14.2.1Þ

over a path P extending between two points x
!
t1ð Þ and x

!
t2ð Þ at different times

for a system described by the variables xi(t), i = 1, 2,…, nd and their derivatives
_xi tð Þ≡dxi=dt. While I is a global quantity that receives contributions from an
infinite set of points, any local change in the paths defining its extrema leaves I
unchanged to first order in the same manner that the derivative and hence first-order
variation of a function f(x) of a single variable with respect to x equals zero at its
extrema. Therefore, if I is discretized atM times, its extrema are invariant with respect
to first-order changes in all 2ndM coordinates. The global problem can therefore be
transformed into that of identifying the solutions of a local differential equation that
pass through. That is, since any first-order displacement, δxm(t), along the extremal
paths leaves I invariant,

δI =
X
m

ðx! t2ð Þ

x
!
t1ð Þ

∂L _xk, xk, tð Þ
∂ _xm

δ_xm tð Þ+ ∂L _xk, xk, tð Þ
∂xm

δxm tð Þ+ ∂L _xk, xk, tð Þ
∂t

� �
dt = 0

ð14.2.2Þ
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However, δ _xm = d δxmð Þ=dt is determined by δxm(t) and can accordingly be eliminated
by partial integration of the first term in Equation (14.2.2):

X
m

ðx! t2ð Þ

x
!
t1ð Þ

−
d

dt

∂L _xk, xk, tð Þ
∂ _xm

+
∂L _xk, xk, tð Þ

∂xm

0
@

1
Aδxm tð Þdt

+
X
m

∂L _xk, xk, tð Þ
∂ _xm

δxm tð Þ+ L _xk, xk, tð Þ
0
@

1
A
������
x
!
t2ð Þ

x
!
t1ð Þ

= 0

ð14.2.3Þ

where the variation δ x
! tð Þ = 0 at the endpoints. Since each δxm(t) is an arbitrary

function at all other times,

−
d

dt

∂L _xk, xk, tð Þ
∂ _xm

+
∂L _xk, xk, tð Þ

∂xm
+ L _xk, xk, t2ð Þ−L _xk, xk, t1ð Þ= 0 ð14.2.4Þ

Thus, the requirement that the path is an extremum of the action transforms the global
condition on I into a local condition on L.

Example

The integrated distance between two points equals

I =
ðx!2
x
!
1

dl=
ðx!2
x
!
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx21 + dx

2
2

q
=
ðx!2
x
!
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_x21 + _x22

q
dt ð14.2.5Þ

The shortest distance between the points is therefore given by the straight line
solution of

d

dt

∂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_x21 + _x22

q
∂ _xi

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
_x21 + _x22

q ∂2 _xi
∂t2

= 0, i= 1,2 ð14.2.6Þ
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15
PARTICLE MECHANICS

Classical mechanics describes the motion of macroscopic bodies moving at small
velocities compared to the speed of light. While the classical law of motion is simply
formulated, if several particles interact, solving the resulting coupled equation system
requires numerical, approximate, or statistical techniques in the absence of a high
degree of symmetry.

15.1 NEWTON’S LAWS

The classical mechanics of particles are governed by Newton’s laws of motion:

• An object observed from an inertial frame (a frame that moves at a uniform
velocity with respect to a fixed point in space) in the absence of external forces
proceeds with constant velocity in a straight line or remains at rest.

• Every particle has a fixed mass, which is a measure of a particle’s inertia
or resistance to change in velocity. The mass is given according to Newton’s
equation by the ratio of the total force on the object, which is the directed, vector
sum of the component forces, to the object’s acceleration.

• If a rigid body A exerts a force on a nonaccelerating rigid body B in a given
direction, body B exerts a force of equal magnitude on body A in the opposing
direction. Otherwise, the force pair would accelerate the center of mass of the
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two bodies or induce rotational motion violating momentum conservation.
For central forces, these forces lie along the line connecting the two bodies. Thus,
while a person standing on a floor initially accelerates by bending the floor
downward, this motion ceases when the upward force balances his weight.

Newton’s equation expressed in meter-kilogram-second (mks) units relates the force
in newtons to the acceleration in m/s2. In centimeter-gram-second (cgs) units, force is
insteadmeasured indyneswith1 N = 105 dyn (1 kg-m/s2) (103 g/kg) (102 cm/m).That is,

F
!
total =

X
i

F
!
i =ma

! MD

T2

� �
ð15.1.1Þ

where acceleration is defined as the second time derivative of the displacement
(position) vector

a
! =

d2 r
!

dt2
D

T2

� �
ð15.1.2Þ

A more general form of Equation (15.1.1), valid for time-dependent particle
masses, can be obtained by introducing the velocity vector as the first derivative of
the displacement vector with respect to time

v!=
dr

!

dt

D

T

� �
ð15.1.3Þ

The unit of velocity is consequentlymeters per second, clarifying the terminology for the
units of acceleration, which, since a! = d v!=dt, are termed meters per second per second.
Multiplying the velocity vector of a particle by its mass yields the momentum vector,

p
! =mv

! ð15.1.4Þ
in terms of which Equation (15.1.1) becomes

F
!
=
dp

!

dt
ð15.1.5Þ

Equation (15.1.5) is then applicable to systems with time-varying masses.

15.2 FORCES

The most frequently occurring forces are simple functions of position. The gravita-
tional force on a particle of mass m at a point r

! induced by a particle of M at r!0 is

F
!
= −

GMm

r
!
−r

!0�� ��2 êr!−r!0
MD

T2

� �
ð15.2.1Þ
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As êr!−r!0 denotes a unit vector in the direction from r!0 to r! (from M to m), the force is
central. Here,

G = 6:67 × 10−11N−m2

kg2
D

MT2

� �
ð15.2.2Þ

is termed the gravitational constant. Close to the surface of a planet, the force can be
approximated simply by

F
!
= −mgêz ð15.2.3Þ

in which the unit vector êz points vertically upward from the planet surface and the
local gravitational acceleration is defined as

g =
GMplanet

R2
planet

MD

T2

� �
ð15.2.4Þ

For the earth, Mearth = 6 × 1024 kg, at a sea level radius, Rearth = 6731 km, the
gravitational acceleration g = 9.8 m/s2. The magnitude of the gravitational force
on an object is termed its weight. From Equation (15.1.1), the same force is required

to accelerate an object independent of its weight. Thus, although on the moon a person
weighs less and can run faster, the destructive forces from a collision with a wall at a
given velocity are identical to those on earth.Mass and weight, which quantify inertia

and force, respectively, are often confused since scales, which measure forces, are

incorrectly calibrated in mass units such as kilograms. Thus, 1 kg on a scale in fact
indicates a force of 9.8 N, which corresponds to a 1.0 kg mass only at sea level, since
g decreases with height.

An object on a inclined plane slanted at an angle θ from the horizontal is only

accelerated by the gravitational force component mg cos(90 − θ) =mg sin θ parallel

to the floor as the perpendicular (normal) component,mg cos θ, is balanced by the equal

and opposite force,F
!
normal, of the floor on the body. Similarly, an object on a horizon-

tal floor pulled at an angle θ from the normal is only accelerated by the force com-

ponent |F| sin θ along the floor’s surface. The frictional force exerted by a surface on

an object is proportional to F
!
normal. The coefficient of static friction, μstatic, defined by

F
!
initiate motion

��� ���= μstatic F!normal

��� ��� ð15.2.5Þ

establishes the magnitude of the force, F
!
initiate motion, required to set a body in motion.

Subsequently, in the standard model of friction, the body experiences dynamic friction
in a direction opposite to its velocity with

F
!
dynamic = −μdynamic F

!
normal

��� ���êv! ð15.2.6Þ

Generally, μstatic > μdynamic, since the body and floor surfaces tend to conform or bond
chemically at rest. In many physical systems however, especially gases and fluids, the
frictional force is instead either proportional to or a nonlinear function of velocity.
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Additional force types include tension, T
!
, which is the outward force applied to

each end of a linear solid such as a string. The tension is constant along an ideal

rod or string such that if a point along the string is held fixed and the string severed,

the force required to hold the new ends stationary remain equal to j T! j. Finally, the
linear restoring force of an ideal spring varies as

F
!
= −k x−xequilibrium

� �
êx ð15.2.7Þ

in which xequilibrium represents the equilibrium position and k is termed the spring
constant.

15.3 NUMERICAL METHODS

Newton’s law provides a second-order differential equation that describes the
evolution of the displacement r

! of a massive body with time. Since an nth order
differential equation can be recast as a coupled system of n first-order equations,
introducing the velocity vector yields the system of two vector equations

dr
!

dt
= v

!

dv
!

dt
=
F
!

m

ð15.3.1Þ

or in matrix notation

d

dt
r
!

v!

� �
=

0 1
0 0

� �
r
!

v!

� �
+

0
F
!
=m

� �
ð15.3.2Þ

For finite Δt, the forward finite difference approximation for the derivative operator
(Eq. 6.1.1) results in

r
! t +Δtð Þ= r

!
tð Þ +Δt v! tð Þ

v
!
t +Δtð Þ = v

!
tð Þ+ Δt

m
F
!

r
!
t +Δtð Þ,v tð Þ� � ð15.3.3Þ

The initial conditions are provided by specifying r
! and v

! at t = 0. Employing the
updated value of the position in the second equation reduces or removes spurious
numerical divergences (see pp. 198–199 of D. Yevick, A First Course in Computa-
tional Physics and Object-Oriented Programming with C++, Cambridge University
Press (2005), for a discussion). The code for one-dimensional motion subject to a
linear restoring force with ma = −kx is:

dT = input ( 'input dT ' )
springConstant = input ( 'input springConstant' )
mass = input ( 'input mass' )
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Particle.position(1) = 0.;
Particle.velocity(1) = 1.;
for loop = 2 : 2000

Particle.position(loop) = Particle.positionn(loop - 1) + …
Particle.velocity(loop - 1) * dT;

Particle.velocity(loop) = Particle.velocity(loop - 1) + …
- dT * springConstant * Particle.position(loop) / mass;

end
plot( dT*[ 1 : 2000 ], Particle.position )

15.4 WORK AND ENERGY

Thework performed by a force on an object equals the change in the total energy of the
particle and its environment, including, e.g., heat and electromagnetic radiation
radiated by the particle.Only the component of the force along the direction of particle
motion (e.g., v

!
) contributes to work and changes the particle energy, since if

F
! � v! =m d v

!
=dt

� �� v! =m=2 dv2=dtð Þ= 0, the particle’s velocity and hence energy
remain constant. Accordingly, the work performed by the force on a body, which
is the negative of the work the body performs against the force, as it moves along
a path C between r

!
i and r

!
f is

W =
ð
C

F
!� d r! MD2

T2

� �
ð15.4.1Þ

which equals

ðr!f
r
!
i

F
!� d r! =

ðtf
ti

m
dv

!

dt
�dr

!

dt
dt =

ðv!f
v
!
i

m
dv

!

dt
� v!dt = m

2

ðv!f
v
!
i

dv
!2

dt
dt =

m

2
v2f −v

2
i

	 

≡ΔK

ð15.4.2Þ

which is termed the change in kinetic energy. Here, F
! �d r! =Fxdx+Fydy+Fzdzwhere

the differential elements dx, dy, dz are evaluated along the path.
Work and energy are measured in Joules in mks units, and ergs in cgs units

with 1 J = 107 erg. The power supplied by F
!
equals the rate at which work is

performed,

P=
dW

dt

MD2

T3

� �
ð15.4.3Þ

Themksandcgsunits of power are, respectively, theWatt anddynewith 1W = 107 dyn.
The energy stored in, e.g., a battery is often specified in units such as watt-hours (Wh).

For conservative forces, the work,W, in Equation (15.4.1) does not depend on the

path C. Hence, for every closed path C passing through each point,
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þ
C�S

F
!� d r! =

ð
S
r! × F

!	 

�dS!= 0 ð15.4.4Þ

As C can be made infinitesimally small at any point in space, Equation (15.4.4)

implies that r! × F
!
= 0 locally. Since the integral of the force is a unique function

of position, labeling the integral of F
! � dr!0 over a path from some reference point

r!0 to a position r
! by U r

!
0

� �
−U r

!� � leads to, where the paths in both integrals in the

first line below coincide up to the point r
!,

−U r
!+ êxΔx
� �

+U r
!� �=

ðr!+ êxΔx
r!0

F
!
r0ð Þ � dr0 −

ðr!
r
!
0

F
!

r0ð Þ �dr0

=
ð
r
!

r
!+ êxΔx

F
!

r0ð Þ � dr0≈Fx r
!� �Δx ð15.4.5Þ

Thus, a single-valued potential energy function U r
!� � can be defined as

F
!
= − r! U r

!� � ð15.4.6Þ

From the definition of the directional derivative, Equation (8.2.2), F
! �δ r!, where

δ r
! = δx, δy, δzð Þ is an infinitesimal displacement between r

! and r
! + δ r! equals the

potential energy difference − U r
!+ δ r!
� �

−U r
!� �� �

= −δU r
!� �. The minus sign indi-

cates that the force associated with a potential that increases with x is directed

along − êx, consistent with a ball rolling backward on an upward-sloping surface.

Examples

The potential function for an object located at small distances from the earth’s sur-

face follows from F
!� d r! = −mgêzð Þ � d r! = −mgdz and, thus taking U = 0 at z = 0,

typically the surface,

U zð Þ= −

ðz
0
−mgð Þdz =mgz ð15.4.7Þ

For a spring, F
! � d r! = −kxêxð Þ �d r! = −kxdx where the distance x is measured from

the equilibrium (rest) position of the spring, leading to

U =
1
2
kx2 ð15.4.8Þ

If time-independent conservative forces act on a system, the total energy, E, of the

system defined as the sum of the potential and kinetic energy remains constant. This is
evident from Equation (15.4.1), which can be rewritten for a conservative force as,
where from the definition of the directional derivative, dU represents the change in
potential energy evaluated along an infinitesimal section of C,
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ΔK =W =
ð
C

F
!� d r! = −

ð
C

r! U � d r!= −

ð
C

dU = −ΔU ð15.4.9Þ

which yields, with E a constant total energy,

K +U =E ð15.4.10Þ
Note that as only differences in energy are measurable, the zero of E and therefore U

can be chosen arbitrarily.

Example

For a particle, if the coordinate l is oriented along the direction of F
!
so that

F
! � d l!=Fdl= −d l

!�r!U = −dU, with vl = dl/dt,

F = −
dU

dl
=m

d2l

dt2
=m

dl

dt

d

dl

� �
dl

dt
=mvl

dvl
dl

=
m

2
dv2l
dl

ð15.4.11Þ

and therefore, since the velocity components perpendicular to ê
l
! are constant,

d

dl

1
2
mv2 +U

� �
=
dE

dl
= 0 ð15.4.12Þ

15.5 LAGRANGE EQUATIONS

While Newton’s laws of motion provide a local relationship that can be iterated
numerically or solvedanalytically to find the trajectoryof aparticle, variational calculus
recasts the problem into that of determining the extrema of an integral over a global
trajectory. In particular, if r! tð Þ denotes the classical trajectory of a particle between
fixed initial and final points r! t1ð Þ and r

!
t2ð Þ as a function of time, then for any small

deviation δ r
!
tð Þ of the path from this trajectory that preserves r! t1ð Þ and r

!
t2ð Þ,

ðt2
t1

F
!
−
d

dt
m v

!� �� �
� δ r! tð Þdt = 0 ð15.5.1Þ

For a conservative force, F
! � δ r! = − r! U� δ r! = −δU, and hence,

ðt2
t1

−δU−
d

dt
m v!� δ r! tð Þ� �

+mv!� d
dt
δ r! tð Þ

� �
dt = 0 ð15.5.2Þ

Integrating the second, total differential, term yieldsm v! t2ð Þ � δ r! t2ð Þ− v! t1ð Þ � δ r! t1ð Þ� �
,

which vanishes as δ r!(t) = 0 at both endpoints. With d δ r
!� �
=dt = δ v!and v! � δ v! = δv2=2

and denoting _r
!= d r!=dt,
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δ

ðt2
t1

T −U r!
� �� �

dt ≡ δ

ðt2
t1

L r!,_r!
	 


dt ≡ δS = 0 ð15.5.3Þ

where S and L
�
r
! _r

!� are termed the action and Lagrangian, respectively.
Equation (15.5.3) can be applied to any coordinate system provided that every
accessible system configuration corresponds to a unique set of coordinate values.
If the number, m, of these generalized coordinates is greater than the number
of degrees of freedom, n, an additional m − n constraint relations are required to
determine the system uniquely. When these relations can be integrated, the system
is termed holonomic; otherwise, it is nonholonomic.Generalized coordinates are often
distinguished by the notation qj and _qj.

Reversing the above derivation yields a differential equation for the classical paths
in terms of L. In particular, with δxj(t) again as an arbitrary first-order path variation, in
N dimensions for the slightly more involved case of a time-dependent lagrangian,

δS=
XN
j= 1

ðt2
t1

∂L _x!, x!, t
	 

∂ _xj

δ _xj tð Þ+
∂L _x!, x!, t
	 

∂xj

δxj tð Þ+
∂L _x!, x!, t
	 

∂t

0
@

1
Adt = 0 ð15.5.4Þ

With δ_xj = d δxj
� �

=dt, integration by parts to eliminate δ _xj in favor of δxj yields

XN
j= 1

ðt2
t1

−
d

dt

∂L _x
!, x!, t
	 

∂ _xj

+
∂L _x

!, x!, t
	 

∂xj

0
@

1
Aδxj tð Þ+

∂L _x
!, x!, t
	 

∂t

0
@

1
Adt

+
XN
j= 1

∂L _x!, x!, t
	 

∂ _xj

δxj tð Þ
������
t2

t1

= 0 ð15.5.5Þ

Since Δxj (t), except at both endpoints where Δxj = 0, constitutes an arbitrary

infinitesimal function in every coordinate direction, L _x
!, x!, t
	 


satisfies the m

Lagrange equations

d

dt

∂L _x
!, x!, t
	 

∂ _xj

=
∂L _x

!, x!, t
	 

∂xj

+L _x
!, x!,t2
	 


−L _x
!, x!,t1
	 


ð15.5.6Þ

Constraints on the system motion can be incorporated into L through Lagrange

multipliers as illustrated in the problems below. For nonconservative forces, such
as that on a charged particle in a magnetic field, L can still be defined as T −W if
a work function can be related to the force by

Fj =
∂

∂xj
−
d

dt

∂

∂ _xj

� �
W r

!,_r!, t
	 


ð15.5.7Þ
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The difficulty of the Lagrangian approach generally resides in formulating the
kinetic energy. This can often be facilitated by introducing an orthogonal coordinate
system.

Examples

1. The time-independent Lagrangian L _x
!, x!
	 


= T _x
!
	 


−U x
!� � =m _x

!2=2−U x
!� � gen-

erates Newton’s equation upon insertion into Equation (15.5.6).

2. For the system in Figure 15.1 in which the right pulley can move in a vertical
direction while the position of the left pulley is fixed, if T represents the string
tension and x1 and x2 the vertical positions of the left and right mass, respec-
tively, applying Newton’s law of motion directly by setting the sum of the
forces on each weight equal to its acceleration yields

T −m1g =m1€x1

2T −m2g =m2€x2
ð15.5.8Þ

with €x1 = −2€x2. In the Lagrangian formalism, if the left mass is displaced a dis-
tance x1 upward from its initial position, the cord is lengthened by x1=2 on both
sides of the pulley, and the right mass therefore moves a distance x2 = −x1=2.
Employing x1 as the generalized variable,

L= T −U =
1
2
m1€x

2
1 +

1
8
m2€x

2
1− m1gx1−

1
2
m2gx1

� �
ð15.5.9Þ

yielding the Lagrange equation of motion

m1 +
m2

4

	 

€x1 = − m1−

m2

2

	 

g ð15.5.10Þ

m1g m2g

FIGURE 15.1 Two pulley system.
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Alternatively, this result can be obtained by employing different variables x1
and x2 for the two mass positions and introducing the constraint x1 + 2x2 = 0
through a Lagrange multiplier according to

L= T −U =
1
2
m1€x

2
1 +

1
2
m2€x

2
2− m1gx1 +m2gx2ð Þ + λ x1 + 2x2ð Þ ð15.5.11Þ

The Lagrange equations then adopt the form

m1€x1 +m1g= λ

m2€x2 +m2g = 2λ
ð15.5.12Þ

The Lagrange multiplier thus corresponds to the force supplied by the spring
tension. Eliminating λ,

m1€x1 +m1g =
1
2
m2€x2 +m2gð Þ ð15.5.13Þ

which, together with the constraint equation, x1 + 2x2 = 0 and therefore €x1 = −2€x2
gives Equation (15.5.10).

3. To demonstrate the advantages of introducing an orthogonal coordinate system,
for a pendulum with mass m and length a attached to the end of a similar pen-
dulum, if the pendulums describe angles of θ1 and θ2 with respect to the − êy
direction, then, e.g., y2 = −a(cos θ1 + cos θ2) with respect to the rest posi-
tion and

L=
1
2
ma2 _θ

2
1 +mgacosθ1 +mga cosθ1 + cosθ2ð Þ

+
1
2
ma2

d

dt
sinθ1 + sinθ2ð Þ

� �2
+

d

dt
cosθ1 + cosθ2ð Þ

� �2 !

=ma2 _θ
2
1 +

1
2
_θ
2
2 + _θ1 _θ2 cos θ1−θ2ð Þ

� �
+mga 2cosθ1 + cosθ2ð Þ

ð15.5.14Þ
4. Similarly, the path of a ball rolling down a spiral ramp of radius R with z = cθ

can be parameterized in cylindrical coordinates for which dêr tð Þ=dt = _θêθ =
_z=cð Þêθ (see Section 15.9), and hence,

L=
1
2
m_r!2−mgz =

1
2
m

d

dt
zêz +Rêr tð Þð Þ

� �
2

−mgz=m
1
2

_z2 +
R

c
_z

� �
2

� �
−gz

� �
ð15.5.15Þ
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15.6 THREE-DIMENSIONAL PARTICLE MOTION

Newton’s laws in a temporally and spatially invariant gravitational field F
!
= −mgêz

yield, where d
!
0 and v

!
0 are the displacement and velocity at t = t0, respectively,

v!= −g t− t0ð Þêz + v!0
d
!
= −

1
2
g t− t0ð Þ2êz + v!0 t− t0ð Þ + d!0

ð15.6.1Þ

From the potential energy difference mg(z − z0) of a particle in moving from an initial
height z0 to z, energy conservation further yields

v2−v20 = −2g z−z0ð Þ ð15.6.2Þ

Example

If a particle is launchedat theoriginwithavelocityv0 = v
!
0

�� �� at an angle θwith respect
to the horizontal, its subsequent horizontal position is given by x = v0t cos θ since
Fx = 0, while its vertical position equals z = v0t sin θ − gt2/2. Accordingly, the par-
ticle hits the ground when z = 0 yielding t = 2v0 sin θ/g and x = 2v20 sinθ cosθ=g.
This is simulated by the following program where the x - and z -components of
the particle position and particle velocity are, respectively, stored in the parti-
cle structure. The calculation terminates when z becomes negative:

dT = input ( 'input dT' )
theta = input ( 'input theta' )
theta = theta * %pi / 180;

% Initial conditions on position, velocity
Particle.position(:,1) = [ 0 ; 0 ]; % x, z
Particle.velocity(:,1) = [ cos( theta ) ; …
sin( theta ) ] * 200; % Vx, Vz

for loop = 2 : 2000
acceleration = [ 0 ; -10 ];
Particle.velocity(:,loop)=Particle.velocity(:,loop-1)+…

acceleration * dT;
Particle.position(:,loop)=Particle.position(:,loop-1)+…

Particle.velocity(:,loop-1) * dT;
if ( Particle.position(2,loop) < 0 ) break; end;

end
plot( Particle.position(1,:), Particle.position(2,:) );
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15.7 IMPULSE

The momentum of a particle acted on by a time-varying force between times t0 and
t0 +Δt changes by

Δp =
ðt0 +Δt
t0

F tð Þdt ð15.7.1Þ

For small time intervals Δt, this momentum change can be specified as

IΔt ≡Δp≈FaverageΔt ð15.7.2Þ
where IΔt is termed the impulse and Faverage signifies the average force over Δt.

15.8 OSCILLATORY MOTION

Subsequent to examining free space motion with zero applied force and motion in a
constant force field, forces that vary proportionally with distance are now considered.
If the force on a particle passing through its equilibrium position xequilibrium at which

F
!
= 0 is oppositely directed and proportional to the displacement from xequilibrium,

periodic motion results. Thus, for an ideal spring with an attached mass m,

F =m
d2 x−xequilibrium
� �

dt2
=m

d2x

dt2
= −k x−xequilibrium

� � ð15.8.1Þ

The coordinate origin is often chosen such that xequilibrium = 0. Accordingly, the
curvature of the particle position graphed as a function of time varies as the negative
of its displacement from the equilibrium position. The real functions with this
property are the cosine and sine functions implying simple harmonic motion. Indeed,

introducing ω0 =
ffiffiffiffiffiffiffiffiffi
k=m

p
and rewriting Equation (15.8.1) as

d

dt
− iω0

� �
d

dt
+ iω0

� �
x tð Þ= 0 ð15.8.2Þ

yield the general complex solution a exp(iω0t) + b exp(−iω0t), the terms of which
must combine to generate a real and hence physical solution

x tð Þ=Acos ω0tð Þ+Bsin ω0tð Þ =C cos ω0t + δð Þ ð15.8.3Þ

with A, B,C, and δ real. Enhancing the spring stiffness and thus restoring force or
decreasing the spring mass and thus inertia increases the acceleration and hence ω0.

To relate C and δ to A and B in Equation (15.8.3), with C0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 +B2

p
and tan δ = B/A,

C0 A

C0 cos ω0tð Þ+ B

C0 sin ω0tð Þ
� �

=C0 cosδcos ω0tð Þ + sinδsin ω0tð Þð Þ

=C0 cos ω0t−δð Þ ð15.8.4Þ
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Equivalently, the cos(ω0t) and sin(ω0t) components of x(t) can be represented by the
x and iy components of a complex vector or phasor, c =C exp(−iδ), that rotates in
the positive angular direction in the complex plane with angular velocity ω0. For
Equation (15.8.4),

C cos ω0t + δð Þ =Re Ce− iδeiω0t
� �

=Re ceiω0t
� � ð15.8.5Þ

While the oscillation period of a harmonic oscillator is amplitude independent, both
the form of x(t) and the period vary with amplitude in an anharmonic oscillator with a
nonlinear restoring force.

Example

The restoring force in a pendulum consisting of massm suspended from amassless
arm of length R equals the gravitational force component, −mgsinθêθ,
perpendicular to the pendulum arm, where θ denotes the angle between the arm
and the negative vertical direction. Since at an angle θ the mass has traveled a dis-
tance equal to the arclength s = Rθ from its equilibrium position,

ma =m
d2s

dt2
=mR

d2θ

dt2
= −mgsinθ≈ −mg θ−

θ3

3!
+…

� �
ð15.8.6Þ

Therefore, only small angular displacements yield simple harmonic motion with

ω0 =
ffiffiffiffiffiffiffiffi
g=R

p
.

A linear oscillator in the presence of a dissipative, velocity-dependent retarding
force and an oscillatory driving force is described by

m
d2~x tð Þ
dt2

+ α
d~x tð Þ
dt

+ k~x tð Þ=F cos ωtð Þ ð15.8.7Þ

Introducing complex notation ~x tð Þ=Re x tð Þ and dividing by m, with f = F/m,
a = α/m, ω2

0 = k=m,

d2x

dt2
+ a

dx

dt
+ω2

0x=
d

dt
− iω1

� �
d

dt
− iω2

� �
x tð Þ= feiωt ð15.8.8Þ

with

iω1,2 =
−a ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−4ω2

0

p
2

ð15.8.9Þ

The solution to Equation (15.8.8)

x tð Þ= c1eiω1t + c2e
iω2t|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

xhomogeneous tð Þ

+
feiωt

ω2
0−ω

2 + iaω|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
xparticular tð Þ

ð15.8.10Þ
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is a sum of the homogeneous solution found by setting the right-hand side to zero and
the particular solution obtained by inserting x(t) = cparticulare

iωt into Equation (15.8.8)
with the right-hand side present and solving for cparticular. The constants c1 and c2 then
follow from the initial conditions. Since for a�ω0, the homogeneous solution is
composed of transient damped oscillating terms that decay as exp(−at/2), as t!∞
only the particular solution remains. This term possesses a characteristic Lorentzian
line shape as a function of ω with a maximum at the resonant frequency near ω0. The
Q-factor is defined either as 2π times the ratio of the stored energy at the resonance
frequency to the energy dissipated per cycle or alternatively as the frequency at
resonance divided by the full width at half maximum (FWHM), i.e., the spacing
between the two points with half the maximum value, of a curve of the oscillator
energy as a function of frequency. Since the dependence of the energy associated with
the particular term in the vicinity of ω0 is given by |x(t)|

2 and is therefore proportional

to ω2
0−ω

2 + iaω
�� ��−2 = 1. ω2

0−ω
2

� �2
+ a2ω2

h i
, when a�ω0, the approximate energy

half width equals 2Δω with ω2
0− ω2

0 + 2Δωω0
� �� �2

= a2ω2
0. Therefore, ΔωFWHM =

2Δω≈ a and Q = f0=ΔfFWHM = ω0=ΔωFWHM =ω0=a.
The eigenfrequencies and eigenfunctions of N -coupled oscillators are analyzed by

inserting xk = cke
− iωt with k = 1, 2,…,N into the equations of motion. Second-order

time derivatives are then replaced by multiplication with − ω2, transforming the
differential equation system into an algebraic system.

Example

Recalling that for a spring U = kx2=2, for two identical harmonic oscillators
joined to opposing walls by springs with spring constant κ11 and linked with a
spring with spring constant κ12, with each xi measured from its equilibrium
position,

L= T −U =
m

2
_x21 + _x22
� �

−
1
2

κ11 x21 + x
2
2

� �
+ κ12 x1−x2ð Þ2

	 

ð15.8.11Þ

leading to

m
d2x1
dx2

+ κ11 + κ12ð Þx1−κ12x2 = 0

m
d2x2
dx2

+ κ11 + κ12ð Þx2−κ12x1 = 0
ð15.8.12Þ

With xk = cke
− iωt, the resulting algebraic system possesses nontrivial solutions for

−mω2 + κ11 + κ12ð Þ −κ12
−κ12 −mω2 + κ11 + κ12ð Þ

����
����= 0 ð15.8.13Þ

or mω2
≷ = κ11 + κ12ð Þ± κ12 (as can be seen by insertion). The symmetric eigenvec-

tor corresponding to the eigenvalue ω< is x1 = x2, so that the restoring force is
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not influenced by the term κ12(x2 − x1) and ω< therefore does not depend on κ12.
For ω =ω>, the eigenvector is given by x1 = −x2 and the oscillation is antisymmet-
ric. The restoring force provided by κ12 is then doubled compared to a system with
a stationary second mass for which x2 = 0, enhancing the effective stiffness and
hence oscillation frequency.

Consider next N masses spaced at distance D are connected by rods that effec-
tively act as springs with force constants κ with the first and last mass similarly
attached to immovable walls. Noting that if xk + 1 − xk is larger than 0, the kth mass
is pulled to the right, while if xk − xk − 1 is larger than 0, the mass is instead pulled to
the left, for each mass

m
d2xk
dt2

= κ xk + 1−xkð Þ−κ xk −xk−1ð Þ, k = 1,2,…,N ð15.8.14Þ

Since the two endpoints are fixed, x0 = xN + 1 = 0. With xk =~xk cos ωt + δð Þ and
ω2
0 = k=m,

−
ω2

ω2
0

~xk =~xk + 1−2~xk +~xk−1 ð15.8.15Þ

The right-hand side of Equation (15.8.15) possesses the same structure as the
discrete second difference operator suggesting oscillatory solutions of the
form ~xk = asinkμ + bcoskμ. Additionally, imposing zero boundary conditions at
k = 0, N + 1 results in

x lð Þ
k = cl sinμlkcos ωlt + δlð Þ ð15.8.16Þ

with μl≡ lπ=(N + 1) and l = 1, 2,…,N. To determine the ωl, Equation (15.8.16) is
inserted into Equation (15.8.15), as sin μl (k + 1) + sin μl (k − 1) = 2 sin μlk cos μl
yields, after canceling sin μlk,

−
ω2
l

ω2
0

= −2 1− cosμlð Þ= −4sin2
μl
2

ð15.8.17Þ

The above formalism can be applied to a solid object such as a rod of cross-
sectional area A if the rod is first considered as a series of N coupled rods of length
D and massm each of which provides a restoring force κ. As doubling the length, D, of
each section halves the restoring force associated with an elongation Δx while dou-
bling A doubles this force, the intrinsic material (as opposed to both material and geo-
metric) properties are expressed by Young’s modulus Y≡ κD/A. Defining a position
coordinate along the rod z such that z = zn = nΔz, in the limit N!∞, D! 0, m! 0
with the density ρ =m=DA and total equilibrium length of the rod ND held fixed,
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Equation (15.8.14) transforms into the wave equation, where v=
ffiffiffiffiffiffiffiffi
Y=ρ

p
is the (phase)

velocity of wave propagation.

m

AD

d2xk
dt2

=
κD

A

xk + 1−2xk + xk−1
D2

� �
) ∂2x z, tð Þ

∂t2
= v2

∂2x z, tð Þ
∂z2

ð15.8.18Þ

15.9 ROTATIONAL MOTION ABOUT A FIXED AXIS

A body displaced an angle θ on a circle of radius R traverses an arclength s = Rθ.
Therefore, defining the angular velocity and angular acceleration as the rate of
change of θ in radians/second (rad/s) (recall that the angle θ, which is specified as
the ratio of two quantities with dimensions of length is dimensionless) and the
corresponding rate of change of the angular velocity in rad/s2,

ω=
dθ

dt

α=
dω

dt
=
d2θ

dt2

ð15.9.1Þ

yields v
! =Rωêθ and a! =Rαêθ for the instantaneous velocity and acceleration of a

particle traveling along a circle of fixed radius R. To determine v! and a
! for general

two-dimensional motion with r! tð Þ= r tð Þêr tð Þ requires the time derivatives of the polar
coordinate basis vectors which are from Figure 15.2:

er(t)

δer(t)

er(t+Δt)

eθ(t)
δeθ(t)

eθ(t+Δt)

Δθ

Δθ

x

y

)

FIGURE 15.2 Infinitesimal rotation.
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d

dt
êr tð Þ = Δθ� êr tð Þj j

Δt
êθ tð Þ=ωêθ tð Þ

d

dt
êθ tð Þ = Δθ� êθ tð Þj j

Δt
− êr tð Þð Þ= −ωêr tð Þ

ð15.9.2Þ

as can be confirmed algebraically from

êr tð Þ = cosθ tð Þêx + sinθ tð Þêy
êθ tð Þ = − sinθ tð Þêx + cosθ tð Þêy

ð15.9.3Þ

since, e.g., differentiating êr in Equation (15.9.3) with respect to time, and comparing
with the formula for êθ, reproduces the first equation in Equation (15.9.2). Accord-
ingly, the time derivative of the particle position is

d

dt
r tð Þêr tð Þð Þ= dr tð Þ

dt
êr tð Þ+ r tð Þdêr tð Þ

dt
= _r tð Þêr tð Þ+ω tð Þr tð Þêθ tð Þ ð15.9.4Þ

The second derivative yields, similarly,

d2 rêrð Þ
dt2

=€rêr + αrêθ + 2ω_rêθ−ω
2rêr ð15.9.5Þ

For exclusively radial motion, only the first term in the above equation is present,
while for angular motion, two terms contribute, the angular acceleration αrêθ and
the “centrifugal acceleration” in the − êr direction with magnitudeω2r = v2=r. Accord-
ingly, an inward force F = −mv2êr=r is required to maintain a particle in circular
motion at a constant speed. Finally, the Coriolis acceleration, 2ω_rêθ, arises when
both the radial and angular velocities differ from zero. Indeed, displacing a particle
outward on a radial spoke of a spinning wheel requires an additional force component
that both increases the particle’s linear velocity to maintain ω = vθ=r and further
compensates for the associated directional change in the difference between the
velocity vectors at the smaller and larger radii.

Example

Southward winds in the Northern Hemisphere increase their distance from the
earth’s axis diminishing their angular velocity, while the opposite occurs for
northward winds resulting in a clockwise circulation.

Alternatively, from Equation (15.9.4), the Lagrangian expressed in polar coordinates
is given by

L=
m

2
_r2 + r2 _θ

2
	 


−V ð15.9.6Þ
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from which Equation (15.9.5) follows from the Lagrangian equations of motion,

∂

∂t

∂L

∂ _r

� �
=
∂

∂t
m_rð Þ =m€r = ∂L

∂r
= −

∂V

∂r
+mr _θ

2
=Fr +mr _θ

2

∂

∂t

∂L

∂ _θ

� �
=
∂

∂t
mr2 _θ
� �

=mr2€θ + 2mr _r _θ =
∂L

∂θ
= −

∂V

∂θ
= r − êθ

1
r

∂V

∂θ

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

− r!V
� �

θ

= rFθ
ð15.9.7Þ

15.10 TORQUE AND ANGULAR MOMENTUM

Force and momentum can similarly be divided into radial and angular components.
The radial momentum equals p!�êr , while the angular momentum is defined as

l
!
= r!× p

! MD2

T

� �
ð15.10.1Þ

(note the presence of r! in place of êr). Since dr
!
=dt and p

! are parallel,

τ
! ≡

d l
!

dt
= r

! ×
d p

!

dt
= r

! × F
! MD2

T2

� �
ð15.10.2Þ

Here, τ! is termed the torque and r
!�� ��sinθr!,F! the lever arm, where θr!,F! is the angle

between the force and the radius vectors. If the vector sum of all torques on a body

is zero, angular forces are absent and the angular momentum is a constant of the

motion.

Example

If a string extending from r
! = 0 to a mass rotating in a circle of radius rwith a speed

vθ is shortened by pulling inward at the origin, the particle velocity increases such
that l =mvθr remains constant, since a torque cannot be applied at r! = 0.

The form of the equations for a point mass in circular motion at radius R around a
pivot subject to a constant torque through the pivot in the direction perpendicular to
the plane of motion as determined by the right-hand rule coincides with those for lin-

ear motion with a constant applied force. That is, from j l!j=mRvθ =mR2ω,

τ ≡ τ
!�� ��= dl

dt
=mR2d

2θ

dt2
ð15.10.3Þ
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Accordingly, in analogy to Equation (15.6.1),

ω=
τ

mR2
t− t0ð Þ +ω0

θ =
1
2

τ

mR2
t− t0ð Þ2 +ω0 t− t0ð Þ+ θ0

ð15.10.4Þ

with θ0 = θ(t0) and ω0 = ω(t0). The kinetic energy and power are then given by

T =
1
2
mv2θ =

1
2
mR2 dθ

dt

� �2
ð15.10.5Þ

and

P=
dT

dt
=mR2d

2θ

dt2
dθ

dt
= τω ð15.10.6Þ

15.11 MOTION IN ACCELERATING REFERENCE SYSTEMS

Often, as for an observer on the earth’s surface, an accelerating coordinate system proves
most natural; however, time derivatives of vectors such as velocity and acceleration then

differ from those in an inertial system. That is, if êspacek and êbodyk tð Þ, are respectively, the
basis vectors of a fixed rectangular and an accelerating coordinate system,

v
!
tð Þ=

X3
k = 1

vspacek tð Þêspacek =
X3
k = 1

vbodyk tð Þêbodyk tð Þ ð15.11.1Þ

Differentiating with respect to time,

dv
!

dt
=
X3
k = 1

dvspacek tð Þ
dt

êspacek ≡
d

dt

����
space

v
!
tð Þ

=
X3
k = 1

dvbodyk tð Þ
dt

êbodyk tð Þ+ vbodyk tð Þdê
body
k tð Þ
dt

 !

≡
d

dt

����
body

v
!
tð Þ +

X3
k = 1

vbodyk tð Þdê
body
k tð Þ
dt

ð15.11.2Þ

where derivatives denoted space and body are evaluated with respect to the
inertial and noninertial reference frames as their components are multiplied by
the corresponding basis vectors. The direction of the basis vectors is preserved
in linearly accelerating but not in rotating frames for which dêk tð Þ=dt is perpendicular
to both ω

! and êk tð Þ and further possesses a magnitude sinθêk ,ω!dθ=dt, proportional
to the component of the unit vector perpendicular to the rotation axis. Since dθ =ωdt,
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X3
k = 1

vbodyk

dêbodyk tð Þ
dt

= ω
! ×

X3
k = 1

vbodyk êbodyk tð Þ ð15.11.3Þ

and therefore, when applied to any vector quantity,

d

dt

����
space

=
d

dt

����
body

+ ω̂× ð15.11.4Þ

Similarly, for time-dependent ω̂, since dðω! × A
!Þ=dt = dω! =dt × A

!
+ ω

! × dA
!
=dt,

d2

dt2

����
space

=
d

dt

����
body

+ ω̂ ×

 !
d

dt

����
body

+ ω̂×

 !
=
d2

dt2

����
body

+
dω̂

dt
× + 2ω̂×

d

dt

����
body

+ ω̂× ω̂ ×ð

ð15.11.5Þ
In a rotating and accelerating coordinate system with origin at r!0 tð Þ relative to fixed
space axes, the position vector of a moving body in the space axes is given by
r
!
space = r

!
0 + r

!
body. Accordingly,

a
!
space−a

!
0 = a

!
body +

dω̂

dt
× r!body + 2ω̂× v!body + ω̂× ω̂× r!body

� � ð15.11.6Þ

The second, third, and fourth terms on the right-hand side of the above expression
represent the transverse (angular), Coriolis and centrifugal acceleration, respectively.

15.12 GRAVITATIONAL FORCES AND FIELDS

The gravitational field is defined such that the force on an infinitesimally small test
mass m is given by mg!. Hence, the field at r!of a point massM at r!0 obeys the inverse
square law

g
! = −

GM

r
!
−r

!0� �2 êr!−r!0 ð15.12.1Þ

Gravitational fields obey the superposition principle that field arising from a collec-
tion of objects is the vector sum of the fields associated with each individual object.

For any closed surface S enclosing a point mass M, each surface element dS
!
is

normal to the surface and directed outward from the enclosed volume so that

êr!−r!0 �dS
!
= cosθ

r
!
−r

!0,dS
!dS. However, viewed from r!, the solid angle dΩ is

determined by the projection of dS
!
onto a plane perpendicular to the radius vector

subtended by d S
!
according to dΩ= cosθ

r
!
−r

!0,dS
!dS= r

!
−r0

�� ��2 and consequently

ð
S
g
!� dS! = −

ð
S
GMdΩ= −4πGM ð15.12.2Þ
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If S does not enclose the origin, the enclosed mass and hence the surface integral are
zero. Since M can be located anywhere within S, if S contains a distribution of mass
elements with mass dM = ρ r

!� �
d3r each of which contributes −4πGρ r

!� �
dV to the

integral,
ð
S
g
!� d S! = −4πG

ð ð ð
V
ρ r0ð Þd3r0 = −4πGMenclosed ð15.12.3Þ

in whichMenclosed represents the total mass enclosed by S. Equation (15.12.3) consti-
tutes a global relationship between the enclosed mass and the field integrated over an
entire Gaussian surface S. However, just as the local behavior of f(x) cannot be
inferred from a global property such as the value of its integral over an interval unless
the functional dependence of f(x) on x is specified, g! at a local point cannot be found
from its surface integral unless the field distribution is either constant or is described
by a known analytic function on S.

Example

For a spherical body with uniform density centered at the origin with total massM
and radius R, the gravitational field is constant by symmetry over the spherical
surface r

!�� ��= r. For r > R,

g
! = −

GMenclosed

r2
êr ð15.12.4Þ

so that the gravitational force is identical to the force generated by a point mass at
its center with the mass, Mbody, of the entire body. On the other hand, inside the
body, r < R and the spherical Gaussian surface S encloses a volume fraction Vr=VR

= r3=R3 of the total mass of the body. Consequently, the gravitational field varies
linearly with r according to

g! = −
G

r2
Mbodyr3

R3

� �
êr!= −

GMbodyr

R3
êr! ð15.12.5Þ

The gravitational potential energy,U, follows fromF
! � dr! =mgêr � dr!. With the con-

vention that U(∞) = 0 and for a point mass M (note the successive minus signs),

U rð Þ−U ∞ð Þ =U rð Þ= −

ðr
∞
F
! � dr = −

ðr
∞

−
GMm

r2

� �
dr = −

GMm

r
ð15.12.6Þ

Similarly, the integral of the gravitational field yields the gravitational potential

Υ rð Þ = U rð Þ
m

= −
GM

r
ð15.12.7Þ
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The gravitational potential and potential energy resemble an infinitely deep depres-
sion sloping toward the origin that provides a radially inward force. The superposition

principle obeyed by the gravitational field implies that the gravitational potential

generated by several bodies is the sum of the gravitational potentials of each

body in isolation; the negative of the gradient of the total potential yields the gravi-

tational field.

15.13 CELESTIAL MECHANICS

Planets orbit an effectively stationary star conserving both angular momentum and
energy. The conservation of angular momentum, L, implies Kepler’s second law that
planets sweep out equal areas in equal times. In particular, with the distance from the
planet to the star and the angular coordinate in the plane of the planetary motion
denoted by r and θ, respectively, over a short time Δt, the planet is displaced from
r! to r! + v!Δt. The area of the triangle formed by these two vectors, ΔA, is only a
function of L/m according to

ΔA=
1
2

r!× r!+ v!Δt
� �����

���� = 1
2
r!× v!Δt
�� ��= LΔt

2m
ð15.13.1Þ

The energy of a planetary orbit equals, from L
!
= r

! × p
! =mvr sinθêr!× p!=mrvθêr!× p!,

E = T +U =
m

2
v2r + v

2
θ

� �
+U =

m

2
dr

dt

� �2
+

L2

2mr2
−
GMm

r
ð15.13.2Þ

Depending on E and L, the orbit describes one of the four conic sections. For E < 0, the
path describes an ellipse with inner and outer turning points at the points where vr = 0
given by the roots of the quadratic equation

Er2 +GMmr−
L2

2m
= 0 ð15.13.3Þ

which describes a circle when the roots coincide, while E = 0 and E > 0 are associated
with parabolas or hyperbolas, respectively. The equation for conic sections in polar
coordinates possesses the form

r =
a

1 + bcosθ
ð15.13.4Þ

indicating that a conic section can be generated by a harmonic oscillator equation in
1/r and hence in vθ = L/mr. Since vθ/ r− 1 implies v−1θ dvθ=dθ = −r−1dr=dθ,

dvθ
dθ

= −
vθ
r

dr

dθ

� �
= − rω

r
 !

, dθ

dt

� �−1dr
dt

" #
= −

dr

dt
ð15.13.5Þ
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Inserting the above equation and L =mrvθ into Equation (15.13.2),

m

2
dvθ
dθ

� �
2

+ v2θ

� �
=E +

GMm2

L
vθ ð15.13.6Þ

After d=dvθ is applied to both sides together with dvθ=dθð Þ d=dvθð Þ dvθ=dθð Þ=
d2vθ=dθ

2, the desired harmonic oscillator equation with a constant driving term results

m
d2vθ
dθ2

+ vθ

� �
=
GMm2

L
ð15.13.7Þ

The inhomogeneous and homogeneous solutions to Equation (15.13.7) are vθ =
GMm=L and a sum of sine and cosine functions. For initial conditions such that only
the cosine function is present

vθ =
L

mr
=
GMm

L
+ c�cosθ ð15.13.8Þ

a conic section equation is obtained in the form

r =
L2=GMm2

1 + ecosθ
ð15.13.9Þ

with eccentricity e = cL=GMm. With Equation (15.13.8) inserted into Equation
(15.13.6), the constant E at θ = 0 for which dvθ/dθ = 0 equals

E =
m

2
−

GMm

L

� �
2

+ c2
� �

ð15.13.10Þ

which implies

c =
GMme

L
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E
m

+
GMm

L

� �
2

s
, e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E
m

L

GMm

� �
2

+ 1

s
ð15.13.11Þ

From Equation (15.13.9), a circle of radius L2=GMm2 is obtained for e = 0, while
0 < e < 1 yields an ellipse with the sum of inner (r<) and outer (r>) turning points
given by

r > + r< =

2L2

GMm2

1−e2
=

2L2

GMm2

−
2EL2

m3G2M2

= −
GMm

E
ð15.13.12Þ

Parabolic motion is obtained for e = 1, and therefore, E = 0 and r> =∞, while
hyperbolic motion results if e > 1 and E > 0 as the radius of the motion approaches
infinity when cos θ! − 1/e > −1.
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Planetary problems are conveniently solved in astronomical units, in which
the units of distance, mass, and time are the earth–sun distance, 1.496 × 1011 m;
the solar mass, Msun = 1.989 × 1030 kg; and a day, 86, 400 s (a useful fact in this
context is that a year is approximately π × 107 s). The gravitational constant,
which in astronomical units is normally expressed in terms of a new parameter
k2≡GMsun, then becomes, where astronomical units are distinguished by primes,
e.g., r = 1.45 × 1011r0,

G
D3

MT3

� �
= 6:673 × 10−11 D3

MT3

� �
= k2

D03

M0T 03

" #
1:496 × 1011
� �3

1:989 × 1030
� �

8:64 × 104
� �2

ð15.13.13Þ

Accordingly,

k2 =
6:673 × 10−11
� �

1:989 × 1030
� �

8:64 × 104
� �2

1:496 × 1011
� �3 D03

M0T 03

" #
= 0:0172ð Þ2 ð15.13.14Þ

while m0
earth = 1=333,000 and the force exerted by the sun on the earth equals

F
! 0
earth =m

0
earth a

!0
earth = −k2m0

earthêr0 ð15.13.15Þ

15.14 DYNAMICS OF SYSTEMS OF PARTICLES

While the motion of a system of several particles cannot in general be calculated
analytically, certain combinations of variables are either invariant or obey simple
evolution equations. The equation of motion for each particle in a system of N
particles is given by

dp
!
j

dt
= F

! ext
j +

XN
k = 1,k 6¼j

F
! int
kj , j= 1,2,…,N ð15.14.1Þ

The first term represents the total external force on the jth particle, while the kth
term in the sum corresponds to the internal force on this particle resulting from
interaction with the kth particle. Although the force on each particle thus
depends on the location of all other particles, Newton’s third law states that the
force of particle i on particle j is the negative of that of j on i. Hence, after summing
over j,

d

dt

XN
j= 1

mjr
!
j =
XN
j= 1

F
!ext
j +

XN
k, j= 1,k 6¼j

F
!
kj
int ð15.14.2Þ
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the sum over internal forces vanishes and

d

dt

XN
j= 1

mjr
!
j =mtot

d

dt

1
mtot

XN
j= 1

mjr
!
j

 !
≡mtot

d

dt
r
!
cm =

XN
j= 1

F
!ext
j ð15.14.3Þ

where

mtot =
XN
j= 1

mj ð15.14.4Þ

denotes the total mass of the system and r
!
cm is termed the center of mass position.

Equation (15.14.3) also expresses themomentum conservation law that if the sumof the

external forces on a system is zero, the total momentum of the system is conserved.

Example

The exhaust of a rocket traveling in a straight line in a gravity and external force
free region travels at a relative velocity v!exhaust with respect to the rocket frame. For
a rocket velocity vrocket tð Þêx, observed from a fixed reference frame, the time rate of
change of the total momentum composed of the sum of the rocket momentum
Mrocketvrocket tð Þêx and the exhaust momentum mexhaust vrocket tð Þ−vexhaustð Þêx equals
zero. Thus, after neglecting mexhaust dvrocket=dt,

F
!
external = 0 =

d

dt
Mrocketvrocket tð Þð Þ+ dmexhaust

dt
vrocket tð Þ−vexhaustð Þ ð15.14.5Þ

Applying dMrocket=dt = −dmexhaust/dt then yields Mrocketdvrocket/dt = −vexhaust
dMrocket/dt or

dMrocket

Mrocket
= −

dvrocket
vexhaust

ð15.14.6Þ

and as vexhaust remains constant, vrocket(t) = vexhaust log(Mrocket(0)/Mrocket(t)) + vrocket(0).

Similarly, the external torque equals the change of the total angular momentum of
the system as

dL
!

dt
=
XN
j= 1

r
!
j ×Fj

!
=
XN
j= 1

r
!
j × F

! ext
j +

XN
k, j= 1,k 6¼j

r
!
j × F

!
jk
int =

XN
j= 1

r
!
j × F

! ext
j = τ!ext ð15.14.7Þ

and hence, the angular momentum is conserved in a system with zero net external

torque.

The kinetic energy of a system equals the sum of the kinetic energy of the center of

mass and that of the particles about the center of mass from
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T =
1
2

XN
j= 1

mj
dr
!
cm

dt
+
d r

!
j−r

!
cm

� �
dt

 !2

=
1
2

XN
j= 1

mj
dr!cm
dt

� �2

+ 2
d r

!
j−r

!
cm

� �
dt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

dr!cm
dt

+
d r

!
j−r

!
cm

� �
dt

 !20
BB@

1
CCA

ð15.14.8Þ

since from the definition of the center of mass, the middle term vanishes. Similarly, the

angular momentum, L
!
, of a system about a point, P, equals that of the center of mass

about this point with the vector sum of L
!
for each particle about the center of mass.

That is, following the above derivation, with P at the origin, yields

L
!
=
XN
j= 1

mj r
!
cm + r

!
j−r

!
cm

� �� �
×
d

dt
r
!
cm + r

!
j−r

!
cm

� �� �� �

=
XN
j= 1

mj

 !
r
!
cm ×

d

dt
r
!
cm +

XN
j= 1

mj r
!
j−r

!
cm

� �
×
d

dt
r
!
j−r

!
cm

� � ð15.14.9Þ

Foraparticle toexperiencezeroaccelerationandthusmaintainaconstantvelocity, thecom-

ponent forceson theparticlemustsumvectorially tozero,which is termedmechanicalequi-

librium. If abody ismotionlesswith respect toan inertial reference frame, it is further said to

be in static equilibriumwith respect to this frame. For an extended object, this requires that

the sum of the forces and torques in each coordinate direction must both be zero.

Examples

1. For a ladder of mass m and length L resting along a frictionless wall at an angle
θ to a horizontal floor, for the net forces to cancel in the horizontal, x, and ver-
tical, y, directions,

Ffloor normal,y−mg = 0

Fwall normal, x−Ffloor frictional, x = 0
ð15.14.10Þ

Computing the torque about the contact point of the ladder with the ground so

that r! ×F
!
floor = 0, since the effective gravitation force on the ladder acts on its

center of mass,

τz =Fwall normal, xLsinθ−
mgL

2
cosθ = 0 ð15.14.11Þ

2. If a falling ladder of length L is placed on a frictionless floor, no force is exerted
on the ladder parallel to the floor, and hence, the center of mass of the ladder
falls vertically. Accordingly, if the bottom of the ladder is initially a distance d
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from a vertical line drawn from the center of the ladder, when the ladder hits the
ground, the bottom will have moved a distance L=2 − d.

3. The equilibrium equations for a mass held by both a horizontal string, 1, under
tension T1 and a second string, 2, under tension T2 that describes an angle θwith
respect to the surface of a horizontal ceiling to which it is attached are given in
the vertical and horizontal directions, respectively, by

mg−T2 sinθ = 0

T1−T2 cosθ = 0
ð15.14.12Þ

4. Finally, if a person with massm stands a distance d from one support of a bridge
of massM and length L, noting that the weight of the bridge acts at its center of
mass, the torque relative to this support equals g(md +ML/2). In equilibrium, a
countervailing torque − LFsupport must be supplied by the opposite support
implying Fsupport = g(md/L +M/2).

The time average of the kinetic energy

Th i≡ 1
τ

ðt0 + τ
t0

Tdt ð15.14.13Þ

over either a single period of a periodic orbit or a time τ over which a spatially limited
system effectively samples all physically accessible states can be simply related to the
time average, hUi, ofU by expressing hT i as the difference of a total differential and a
term containing the forces

2 Th i =
XN
j= 1

p
!
j � p!j

* +
=

d

dt

XN
j= 1

r
!
j � p!j

 !* +
−
XN
j= 1

r
!
j �
dp!j
dt

* +

≡
dϖ

dt

� �
−
XN
j= 1

r
!
j �F

!
j

* +
ð15.14.14Þ

The quantity ϖ is termed the virial. Since

dϖ

dt

� �
=
1
τ

ðt0 + τ
t0

dϖ

dt
dt =

1
τ
ϖ τ + t0ð Þ−ϖ t0ð Þð Þ! 0 ð15.14.15Þ

either over a period of the motion or as τ!∞ for a bounded system,

2 Th i = −
XN
j= 1

r
!
j �F

!
j

* +
=
XN
j= 1

r
!
j � r

!
Uj

* +
ð15.14.16Þ
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Example

For a single particle in a potential U = crn,

2 Th i= r
!� êr dUdr
� �

= r cnrn−1
� �� �

= n Uh i ð15.14.17Þ

In a gravitational force field, n = −1 and therefore 2hTi = −hUi, implying E = hUi/2.

15.15 TWO-PARTICLE COLLISIONS AND SCATTERING

If particles with masses mj, j = 1, 2 collide, in the absence of external forces, the total
vector momentum must be unchanged before and after the collision, yielding three
equations relating the initial and final velocities v!initial

j and v
!final
j :

m1v
!initial
1 +m2 v

!initial
2 =m1 v

!final
1 +m2 v

!final
2 ð15.15.1Þ

The kinetic energies are then related by

1
2
m1 v

! initial
1

� �2
+
1
2
m2 v

! initial
2

� �2
=
1
2
m1 v

! final
1

� �2
+
1
2
m2 v

! final
2

� �2
+Q ð15.15.2Þ

For an elastic collision,Q = 0,while for inelastic collisions, the particles can experience
an energy loss,Q > 0, as through friction, or an energy gain,Q < 0, as in an explosion.

In the center of mass frame, the center of mass of the two particles is stationary.
Consequently, at all times, m1r

!
1 +m2r

!
2 = 0 and therefore m1v

!
1 +m2v

!
2 = 0, while the

particles are situated at

r!
cm
1 = r!1−r

! cm
= r!1−

m1r
!
1 +m2r

!
2

m1 +m2
=

m2

m1 +m2
r!1−r

!
2

� �

r
!cm
2 = r!2−r

! cm
= r!2−

m1r
!
1 +m2r

!
2

m1 +m2
=

m1

m1 +m2
r
!
2−r

!
1

� � ð15.15.3Þ

Note that asm2!∞, the second particle becomes the center of mass and r!cm
1 = r!1−r

!
2

while r
!cm
2 = 0. For particles approaching with a relative velocity v

!initial
relative =

v
!initial
2 − v

!initial
1 , a scattering problem requires the determination of v!final

relative = v
!final
2 −

v
!final
1 . Since the force of the first particle on the second F

!
12 = −F

!
21,

d2 r!2−r
!
1

� �
dt2

=
d2r

!
2

dt2
−
d2r

!
1

dt2
=
F12

m1
−
F21

m2
=

1
m1

+
1
m2

� �
F12 =

1
μ
F12 ð15.15.4Þ
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in terms of the reduced mass

μ =
1
m1

+
1
m2

� �−1

=
m1m2

m1 +m2
ð15.15.5Þ

The total kinetic energy of the two particles in the center of mass frame equals

T =
1
2

m1 vcm1
� �2

+m2 vcm2
� �2	 


=
1
2

m1
m2

2

m1 +m2ð Þ2 v!1−v
!
2

� �2
+m2

m2
1

m1 +m2ð Þ2 v!1−v
!
2

� �2 !

=
1
2
μ v!1−v

!
2

� �2
ð15.15.6Þ

while the angular momentum of the system about the center of mass, which is invar-
iant throughout the collision process in the absence of external torques, can similarly
be expressed as

L=m1r
!cm
1 ×

d r
!cm
1

dt
+m2r

!cm
2 ×

d r
!cm
2

dt
= μ r

!
1−r

!
2

� �
×
d r!1−r

!
2

� �
dt

ð15.15.7Þ

Defining the impact parameter, b, as the distance between the lines tangent to the
paths of the two incoming particles in the center of mass frame as t! −∞, the
scattering angle of elastic collisions can be parameterized by the relative,
“internal” kinetic energy of motion (Eq. 15.15.6) and the relative angular momentum
(Eq. 15.15.7), which evaluates to m1 v

!
1

�� ��b =m2 v
!
2

�� ��b = μ v
!
1−v

!
2

�� ��b.
For a particle beam incident on a stationary scatterer, the differential cross

section dσ(θ, ϕ)/dΩ is defined such that (dσ(θ, ϕ)/dΩ)dΩ is the ratio of the number

of scattering events into the solid angle dΩ about (θ, ϕ) per second to the number

of incident particles per unit cross-sectional area per second (the particle flux).

Integrating dσ(θ, ϕ)/dΩ over all angles yields the total cross section

σ =
scattered flux

incident flux per unit area
ð15.15.8Þ

Since, e.g., a classical scatterer of 0.1 m2 cross section scatters 1 particle/s for an

incident flux of 10 particles/s/m2, the cross section constitutes an effective scattering

area. For ϕ-independent (axially symmetric) scattering and an x-traveling incoming
particle beam in the laboratory frame, the differential scattering cross section in
the laboratory and center of mass frames differs by a factor dΩlab/dΩcm = d cos θlab/
d cos θcm. This can be obtained from the relationships

vfinal,cm1 sinθcm = vfinal, lab1 sinθlab

vfinal,cm1 cosθcm + vcm = vfinal, lab1 cosθlab
ð15.15.9Þ
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for the final x and y components of v1 in the center of mass and laboratory frames, or
equivalently,

tanθfinal, lab1 =
sinθfinal,cm1

vcm

vfinal,cm1

+ cosθfinal,cm1

ð15.15.10Þ

Lastly, the impulse approximation applies to highly energetic particles that main-
tain a nearly linear path and small relative energy change while scattering. The trans-
verse momentum acquired can be estimated by integrating the transverse force
component over this line. If x, y, and b, respectively, denote the coordinate directions
parallel and perpendicular to the incoming particle direction and the impact parameter,
since for linear motion Fy = (b/r)F at all x while 2E = pv is taken as x independent, the
resulting scattering angle is given by

θ≈ tanθ =
Δp
p

=
1
p

ð∞
−∞

Fy rð Þdt = 1
p

ð∞
−∞

F
!
rð Þ

��� ���b
r

� �
dx

v
=

b

2E

ð∞
−∞

F
! ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 + x2
p	 
��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 + x2

p dx

ð15.15.11Þ

15.16 MECHANICS OF RIGID BODIES

Since all points on a solid rotating about a point termed the pivot possess
identical angular velocities, the angular momentum and response to an applied
torque are determined by the geometry and density of the object. Considering
first the simplified case of a planar body in the x–y plane with mass per unit area
σ(r, ϕ) rotating with an angular velocity ω about the z-axis, the velocity of an

element dxdy centered at (x, y) equals v
! = rωêθ =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
ωêθ resulting in a total

angular momentum (where ρd3r = σdA is employed for mass distributed over a
two-dimensional surface)

L
!
=
ð ð ð
Vbody

r
! × ρ r

!� �
v
!� �
d3r = êzω

ð ð
Sbody

r2σ r,ϕð Þrdrdϕ = êzIω ð15.16.1Þ

Vbody and ρ(r) denote the volume and density of the solid, while themoment of inertia,
I, is defined by

I =
ð ð ð
Vbody

ρ rð Þr2d3r ≡
ð ð ð
Vbody

r2dm=
ð ð
Sbody

r2σ r,ϕð Þrdrdϕ ð15.16.2Þ
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For an isolated particle at r!0 with r!0
�� ��= a, ρ r!

� �
=mδ 3 r!− r! 0Þ�

and I =mr02 =ma2,
while for a

Disk or cylinder Idisk =
1
2
ma2

Thin ring or cylindrical shell Iring =ma2

Thin rod of lengthL, pivot at center Irod =
1
12

mL2

ð15.16.3Þ

The kinetic energy is similarly computed in terms of themoment of inertia according to

T =
1
2

ð ð ð
Vbody

ρ r
!� �
v2d3r =

1
2

ð ð ð
Vbody

v rð Þð Þ2dm =
ω2

2

ð ð
Sbody

r2σ r,ϕð Þrdrdϕ =
1
2
Iω2 ð15.16.4Þ

while the torque is given in terms of the force applied to the body by

τ
! =
ð ð ð
Vbody

r! ×F
!
appliedd

3r ð15.16.5Þ

with

τ! =
dL

!

dt
= I

dω

dt
= Iα ð15.16.6Þ

Formulas for linear motion are therefore generally converted into their angular
counterparts for such planar objects by replacing m with I and linear by angular
quantities.

The computation of the moment of inertia for a thin, laminar body with
Ð
z2dm = 0

rotating about the z-axis can often be simplified by the perpendicular axis theorem

Iz =
ð

x2 + y2
� �

dm=
ð

x2 + z2
� �

dm+
ð

y2 + z2
� �

dm = Ix + Iy ð15.16.7Þ

so that Iz equals the sum of the moments of inertia about the two perpendicular axes.
As well, the parallel axis theorem states that if I is calculated about a z-oriented
rotation axis C passing through its center of mass with respect to which

Ð
r
!
dm = 0,

the z-component of the moment of inertia, I C +Rð Þ
z , about a parallel axis displaced

by R
!
from C is

I C +Rð Þ
z =

ð
x−Rxð Þ2 + y−Ry

� �2h i
dm =

ð
r!2dm+

ð
R
! 2dm−2R

! �
ð
r
!
dm= I Cð Þ

z +mR2

ð15.16.8Þ

200 PARTICLE MECHANICS



Examples

1. The moment of inertia about the center of a thin circular disk of radius a rotating
around the z-axis with σ =m/πa2 and hence dm = σ � 2πrdr equals

I Cð Þ
z = 2πσ

ða
0
r3dr = 2πσ

a4

4
=
m

2
a2 ð15.16.9Þ

while if the disk is instead rotated about a point on the rim, I C + að Þ
z = 3ma2=2.

2. A cylinder with mass m and radius R rolling without slipping on a plane
inclined by an angle α relative to the horizontal can be analyzed in several ways.
Designating the distance that the cylinder is displaced downward along the
plane and the cylinder’s rotation angle by x and θ, respectively,

L=
1
2
m _x2 +

1
2
Iω2 +mgxsinα=

1
2
m _x2 +

1
4
mR2 _θ

2
+mgxsinα ð15.16.10Þ

Incorporating the constraint x = Rθ by employing L0 = L + λ(Rθ − x) in place of
L in the Lagrange equations with λ, a Lagrange multiplier leads to the equations

m€x−mgsinα= −λ
1
2
mR2€θ = λR

ð15.16.11Þ

From the first line, λ corresponds to the frictional force. Eliminating λ from the
equations above and employing the second derivative of the constraint equation,
R€θ =€x results in€x = 2gsinα=3.Theconstraint equation canbealternatively employed
to eliminate _θ in Equation (15.16.10) before applying the Lagrange equation. The
upper and lower equation in Equation (15.16.11) also follow directly from

F
!
total =ma

! and from equating the torque provided by the frictional force to the time
derivative of the angular momentum L = Idiskω around a rotation axis at the center of
the cylinder.Finally, the stationarypoint of contact between the cylinder and the plane
can be employed as an instantaneous axis around which the cylinder rotates. Around
this axis, the torque ismg sin α, while the angular momentum L = 3mR2ω/2 from the
principal axis theorem yielding the above result.

3. Consider next a falling ladder of lengthL andmassm resting on a frictionless floor
extending in the x-direction and a similarly frictionless wall and describing an
angle θ with respect to the downward wall (i.e., the − y) direction.With the origin
at the intersection of thewall and the floor, the ladder’s center ofmass is located at

r
!
cm =

L

2
sinθêx + cosθêy
� � ð15.16.12Þ

(This point moves along the circumference of a circle of radius L/2 as the ladder
falls as θ also equals the angle between the y-axis and the line from the origin to the
center of mass). Accordingly, since v!cm = L _θ=2 cosθêx− sinθêy

� �
, computing the

kinetic energy about the ladder’s center of mass yields the Lagrangian
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mv2cm
2

+
Iω2

2
−mgy =

mL2 _θ
2

8
+
mL2 _θ

2

24
−
mgLcosθ

2
=
mL2 _θ

2

6
−
mgLcosθ

2

ð15.16.13Þ
and hence, €θ = 3gsinθ=2L. If the ladder is initially vertical, since €xcm =L=2
€θ cosθ− _θ

2
sinθ

	 

> 0 for 3gcosθ=2L> _θ

2
, while energy conservation implies

T +V =mgL=2 =mL2 _θ
2
=6 +mgLcosθ=2 or _θ

2
= 3g 1− cosθð Þ=L, the ladder

separates from the wall once cos θ = 2/3.

For an arbitrarily shaped body rotating with angular velocity Ω
!
about a fixed pivot,

designating the vector from the pivot by r
!, the velocity at each point of the body is

Ω
!
× r

! so that

L
!
=
ð
r
!× v

!
dm=

ð
r
!× Ω

!
× r

!
	 


dm=
ð

r2 Ω
!
− r

!
r
!�Ω!
	 
n o

dm ð15.16.14Þ

In terms of the inertia tensor I with elements

Ikl =
ð

r2δkl−rkrl
� �

dm ð15.16.15Þ

Equation (15.16.14) can be rewritten as

Lk = IklΩl ð15.16.16Þ
The kinetic energy is obtained from (since A � (B ×C) = B � (C × A))

T =
1
2

ð
Ω
!
× r

!
	 


� Ω
!
× r

!
	 


dm=
1
2
Ω
! �
ð
r
!× Ω

!
× r

!
	 


dm=
1
2
Ω
! � L! =

1
2
Ω
! �I�Ω!

ð15.16.17Þ

Example

The inertia tensor of a cube with a pivot at its corner point is evaluated by placing
the corner at the origin and orienting the adjacent edges along the coordinate axes.
The components of I are then by symmetry

Ixx = Iyy = Izz =
ð

r2−z2
� �

dm =
m

L3

ðL
0

ðL
0

ðL
0

x2 + y2
� �

dxdydz= 2
m

L3
L3

3
L2 =

2
3
mL2

Ixy = Iyz = Ixz = Ixz = Iyz = Izy = −
m

L3

ðL
0

ðL
0

ðL
0
zydxdydz = −2

m

L3
L2

2

� �
2

L= −
1
4
mL2

ð15.16.18Þ
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The general parallel axes theorem, derived as previously, adopts the form

I C +Rð Þ
kl =mR

! 2δkl−mRkRl + I
Cð Þ
kl ð15.16.19Þ

Example

Converting the inertia tensor, Ikl = δkl mL
2/6, of a cube about its center to I relative to

the corner at (L/2, L/2, L/2) with this formula reproduces Equation (15.16.18).

For motion around principal rotation axes specified by the eigenvectors of the inertia

tensor, L
!
and Ω

!
are parallel. The corresponding eigenvalues quantify the associated

moments of inertia. While d L
!
=dt = τ

! in an inertial laboratory frame, in a frame rotat-
ing with the body, from Equation (15.11.4),

dL

dt

����
body

+ Ω
!
× L

!
= τ

! ð15.16.20Þ

For L
!
not along a principal axis, L

!
only remains constant if a constant torque is applied.

For a coordinate system coinciding with the principal axes, L
!
= I1Ω1, I2Ω2, I3Ω3ð Þ and

Equation (15.16.20) becomes

I1
dΩ1

dt
= I2− I3ð ÞΩ2Ω3 + τ1

I2
dΩ2

dt
= I3− I1ð ÞΩ3Ω1 + τ2

I3
dΩ3

dt
= I1− I2ð ÞΩ2Ω3 + τ3

ð15.16.21Þ

which are termed the Euler equations. If 3 is a symmetry axis, I1 = I2 = I, while for zero
applied torque,

I
dΩ1

dt
= I− I3ð ÞΩ2Ω3

I
dΩ2

dt
= I3− Ið ÞΩ3Ω1

I3
dΩ3

dt
= 0

ð15.16.22Þ

Since Ω3 is time independent, combining the first two equations above yields with
ω = (1 − I3/I)Ω3

d2Ω1

dt2
= −ω2Ω1 ð15.16.23Þ
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Thus, Ω1 =ΩT sin(ωt + ϕ0), Ω2 =ΩT cos(ωt + ϕ0), and Ω
!
rotates or precesses around

the three axis.
The Euler angles, for which one convention is depicted in Figure 15.3, conform to

the motion of a top and are defined by a rotation through an angle ϕ about the zlaboratory
precession axis followed by a rotation of θ about its xtop -axis to incline the ztop
symmetry axis of the top relative to the zlaboratory precession axis and finally a rotation
of ψ around the ztop -axis.

The angular momentum components associated with the Euler angles resolved
along the body axes, X, Y, Z, are given by, noting that _ψ , _ϕ, and _θ are oriented along
the Z, z and n axis, termed the line of nodes, where ên = cosψ êX − sinψ êY and
êz = sinθ sinψ êX + cosψ êYð Þ + cosθêZ ,

ΩX = _ϕêX � êz + _θêX � ên + _ψ êX � êZ = _ϕsinθ sinψ + _θcosψ

ΩY = _ϕêY � êz + _θêY � ên + _ψ êY � êZ = _ϕsinθcosψ − _θ sinψ

ΩZ = _ϕêZ � êz + _θêZ � ên + _ψ êZ � êZ = _ϕcosθ + _ψ

ð15.16.24Þ

The Lagrangian of a top is therefore, where dcm is the distance from the tip to the
center of mass,

T −V =
I

2
Ω2

X +Ω
2
Y

� �
+
IZ
2
Ω2

Z −mgdcm cosθ

=
I

2
_ϕ
2
sin2θ + _θ

2
	 


+
IZ
2

_ϕcosθ + _ψ
� �2

−mgdcm cosθ ð15.16.25Þ

The êz and êZ angular momentum components associated with ϕ and ψ are conserved.

x

y

z

Y

θ

ϕ

Z

Xψ

n

FIGURE 15.3 Euler angles.
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A general rotation can be represented as the product of three rotation matrices as

R ϕ,θ,ψð Þ= e− iψSbodyZ e− iθS
line of nodes
n e− iϕS

laboratory
z ð15.16.26Þ

Rotating êx and êy an infinitesimal angle δθ around z respectively yields components
δθ and − δθ along êy and êx. Cyclically, permuting x! y! z! x yields the rotation

matrix RΩ
! = e− iΩêΩ�S

!

with

S
!
= iêz

0 −1 0

1 0 0

0 0 0

0
BB@

1
CCA

x!x−yδθ
y!y + xδθ

+ iêx

0 0 0

0 0 −1

0 1 0

0
BB@

1
CCA

y!y−zδθ
z!z + yδθ

+ iêy

0 0 1

0 0 0

−1 0 0

0
BB@

1
CCA

z!z−xδθ
x!x+ zδθ

ð15.16.27Þ
From direct multiplication,

SΩð Þi, SΩð Þj
h i

= iεijk SΩð Þk ð15.16.28Þ
Further,

− i Ω
!� S!
	 


V
!
=

0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

0
BB@

1
CCA

Vx

Vy

Vz

0
BB@

1
CCA=

ΩyVz−ΩzVy

ΩzVx−ΩxVz

ΩxVy−ΩyVx

0
BB@

1
CCA= Ω

!
× V

!

ð15.16.29Þ

so that − iêΩ� S
!	 


r
! = êΩ × r

!, which together with − iêΩ� S
!	 
2

r
! = êΩ × êΩ × r

!� �
=

êΩ! êΩ!� r
!

	 

− r

! and therefore − iêΩ� S
!	 
3

r
! = − − iêΩ� S

!	 

r
! yields for the Taylor

expansion of the exponential

RΩ
! = e− iΩêΩ�S

!

= I− isinΩêΩ� S
!
− 1− cosΩð Þ êΩ� S

!	 
2
ð15.16.30Þ

Applying the above equation to a vector r! results in an expression for the rotated
vector r!Ω

r
!
Ω
! = r

! cosΩ+ êΩ! × r
! sinΩ+ êΩ! êΩ

!� r!
	 


1− cosΩð Þ ð15.16.31Þ

termed Rodrigues’ rotation formula. Here, êΩ
! êΩ

!� r!
	 


coincides with the outer

product êΩ!�êΩ
! applied to the column vector r!.

Infinitesimal rotations unlike finite rotations commute as the noncommuting
term after two first-order infinitesimal rotations is second-order and therefore can
be neglected. Angular velocities defined in terms of infinitesimal rotations by

ωΔΩ
! = limΔt!0

�
RΔΩ

!−1
�

Δt
	 


therefore add.
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15.17 HAMILTON’S EQUATION AND KINEMATICS

The Lagrangian equations provide ND second-order differential equations for a
D-dimensional system of N particles. Accordingly, they uniquely specify the evolution
of each point in a 2ND -dimensional phase space comprised of the spatial andmomentum
coordinatesofeachparticlewhensupplementedby2ND initial conditions.To transformto
a formalism explicitly involving phase space variables, a comparison of the Lagrange

equation (Eq. 15.5.6) with F
!
= d p!=dt suggests identifying ∂L/∂xi = (rL)i = −(rV)i

with a generalized force and ∂L=∂ _x with a generalized momentum, pi. If ∂L/∂xi = 0
for some i, the corresponding pi are conserved (time invariant).

A phase space equation for the pk and xk is obtained through a Legendre transfor-
mation to the Hamiltonian

H p!, x!
� �

=
X
m

pm _xm−L
_x!, x!, t
	 


ð15.17.1Þ

so that ∂H=∂ _xi = 0, eliminating the dependence on _x
!. The Lagrange equation then

transforms into Hamilton’s equations:

∂H

∂xk
= −

∂L

∂xk
= −Fk = − _pk ð15.17.2Þ

together with (from the independence of pi and xk as a particle can possess any
momentum at each spatial point)

∂H

∂pk
= _xk ð15.17.3Þ

Since the particle coordinates in phase space evolve with time, pk = pk(t) and xk = xk(t)
and hence

dH

dt
=
X
m

_pm _xm + pm€xm−
∂L

∂xm|{z}
_pm

∂xm
∂t

−
∂L

∂ _xm|{z}
pm

∂ _xm
∂t

0
BB@

1
CCA−

∂L

∂t

����
p
!,x!

= −
∂L

∂t

����
p
!,x!

ð15.17.4Þ

If L is not explicitly time dependent, H coincides with the conserved energy, e.g.,
for a single particle

H =mv2−L= 2T − T −Vð Þ= T +V ð15.17.5Þ

Any function of position and momentum variables, F(xm, pm) further satisfies the
evolution equation
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dF

dt
=
∂F

∂t
+
XN
m = 1

∂F

∂xm

dxm
dt

+
∂F

∂pm

dpm
dt

� �
=
∂F

∂t
+
XN
m= 1

∂F

∂xm

∂H

∂pm
−
∂F

∂pm

∂H

∂xm

� �
≡
∂F

∂t
+ F,Hf g

ð15.17.6Þ
where {F,H} is termed the Poisson bracket of F and H. Some properties of the
Poisson bracket are

A+B,Cf g = A,Cf g + B,Cf g, AB,Cf g=A B,Cf g + A,Cf gB

xj,pk
� �

=
XN
m= 1

∂xj
∂xm

dpk
dpm

−
∂xj
∂pm

dpk
dxm

� �
= δjk , xj,xk

� �
= pj,pk
� �

= 0

xj,F
� �

=
∂F

∂pj
, pj,F
� �

= −
∂F

∂xj
ð15.17.7Þ

To change the generalized coordinates employed to describe a system, a term
dG(x, X, t)/dt containing a new coordinate X can be added to L without altering
the Lagrange equations since, specializing for simplicity to one dimension,

d

dt

∂

∂ _x
L+

dG

dt

� �� �
=
d

dt

∂

∂ _x
L +

∂G x,X, tð Þ
∂t

+ _x
∂G x,X, tð Þ

∂x
+ _X

∂G x,X, tð Þ
∂X

� � !

=
d

dt

∂L

∂ _x

� �
+
d

dt

∂G x,X, tð Þ
∂x

=
∂

∂x
L+

dG x,X, tð Þ
dt

� �
ð15.17.8Þ

Two Hamiltonian functions H(x, p) and ~H X,Pð Þ of different coordinates that refer to
the same physical system can therefore be related by

L= _xp−H x,pð Þ= _XP− ~H X,Pð Þ+ dG

dt
= _XP− ~H X,Pð Þ + ∂G

∂t
+ _x

∂G

∂x
+ _X

∂G

∂X
ð15.17.9Þ

if the generating function G(x, X, t) is determined from the canonical transformation

∂G

∂x
= p,

∂G

∂X
= −P, ~H =H +

∂G

∂t
ð15.17.10Þ

The Poisson bracket of any two functions of (x, p) remains invariant when the
functions and Poisson bracket are evaluated in (X, P). Canonical transformations
are often employed to describe a system in terms of ignorable coordinates with zero
time derivatives that correspond to constants of the motion.
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Example

For a harmonic oscillator H(x, p) = p2/2m +mω2
0x

2/2, the generating function G =
(mω0x

2 cot X)/2 yields

P= −
∂G

∂X
=
mω0x2

2
csc2X x=

ffiffiffiffiffiffiffiffiffi
2P
mω0

r
sinX

)
p =

∂G

∂x
=mω0xcotX p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mω0P

p
cosX

ð15.17.11Þ

Since the partial derivative of G with respect to time is zero,

~H X,Pð Þ =H x,pð Þ=ω0P cos2X + sin2X
� �

=ω0P ð15.17.12Þ

Hence, _X =ω0 and X =ω0t + θ0 are ignorable, while P =H/ω0 = E/ω0 leading to

x =

ffiffiffiffiffiffiffiffiffi
2E

mω2
0

s
sin ω0t + θ0ð Þ ð15.17.13Þ

A further Legendre transformation leads to the X-independent Hamilton’s princi-
pal or phase function

S x,P, tð Þ=G x,X, tð Þ+PX ð15.17.14Þ
with

∂S x,P, tð Þ
∂X

=
∂G x,X, tð Þ

∂X
+P= −P+P= 0

∂S x,P, tð Þ
∂x

=
∂G x,X, tð Þ

∂x
+
∂ XPð Þ
∂x

= p

∂S x,P, tð Þ
∂P

=
∂G x,X, tð Þ

∂P
+
∂ XPð Þ
∂P

=X

�H X,P, tð Þ=H x,p, tð Þ+ ∂S

∂t

ð15.17.15Þ

The phase function can be employed to specify a system for which all coordinates and
momenta, X, P, are ignorable, while �H does not depend on time and can be set to zero
by redefining the zero of energy. This yields the Hamilton–Jacobi equation

H x,p, tð Þ=H x,
∂S

∂x
, t

� �
= −

∂S

∂t
ð15.17.16Þ
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For a time-independent Hamiltonian, H again represents the conserved energy, E, of
the system:

H x,
∂S

∂x

� �
=E ð15.17.17Þ

and therefore, where W(x, P) is termed Hamilton’s characteristic function,

S x,P, tð Þ = −Et +W x,Pð Þ ð15.17.18Þ

Example

For a harmonic oscillator, the Hamilton–Jacobi equation takes the form

1
2m

∂W

∂x

� �
2

+
1
2
mω2

0x
2 =E =

1
2
mω2

0A
2 ð15.17.19Þ

yielding

p =
∂W

∂x
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ω2

0 A2−x2ð Þ
q

ð15.17.20Þ

and hence

W x,Pð Þ =
ðx
x0

pdx=
ðx
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ω2

0 A2−x2ð Þ
q

dx ð15.17.21Þ

The action variable associated with p (note that the integral corresponds to the area
under a circle),

2πI ≡
þ
pdx= 2

ðA
−A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ω2

0 A2−x2ð Þ
q

dx= 2πmω0πA
2 =

2πE
ω0

ð15.17.22Þ

is then a constant of the motion and, while possessing dimensions of [MD2/T], can
be employed in place of the constant P. The conjugate coordinate is then similarly
set to a constant of the motion by

X = const =
∂S x, I, tð Þ

∂I
=
∂W x, Ið Þ

∂I
−
∂E

∂I
t ð15.17.23Þ

The advantage with the above definition of I is that X is now dimensionless and is
thus denoted by θ0, termed an angle variable, while ∂E/∂I = (1/mπA2)∂E/∂ω0 =ω0

from Equation (15.17.19). This uniquely describes the motion according to

X =ω0t + θ0 =
∂W x, Ið Þ

∂I
=
ðx
−
ffiffiffiffiffi
2I

mω0

p mω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I
mω0

−x2
r� �−1

dx= sin−1

ffiffiffiffiffiffiffiffiffi
mω0

2I

r
x

� �

ð15.17.24Þ
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16
FLUID MECHANICS

While fluids can be exposed to numerous external forces such as pressure, temperature
gradients, and electromagnetic forces and can exhibit nonlinearities, multicomponent
behavior, and other complex properties, homogeneous fluid motion at low velocities
is relatively simply analyzed from Newton’s equations and mass conservation.
Steady flow refers to time-independent fluid motion. Rotational flow induces a torque
on a small paddle wheel introduced into the fluid, while otherwise the motion can be
described by the gradient of a potential function and is termed irrotational or potential
flow. At high velocities, viscous (frictional) effects can be substantial. This can
generate unstable turbulent flow for which a small perturbation can initiate unpredict-
able changes in the local velocity distribution. Finally, liquid and (particularly low-
speed) gas flow can be compressible.

16.1 CONTINUITY EQUATION

While fluid motion can be modeled numerically by evolving infinitesimal fluid
elements according to Newton’s laws of motion, analytic methods introduce contin-

uous density and local velocity distributions, ρ r!, t
� �

and v! r!, t
� �

, together with a local

scalar pressure, p r!, t
� �

, which is defined by p = − F
! �êA=A, where F

!
represents the

force on a surface element of the fluid of area A and êA is the outward normal to
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the surface. The unit of pressure 1 Pa = 1 N/m2 is termed the Pascal. One atmosphere

of pressure corresponds to a pressure of ≈ 105 Pa≡ 1 bar.

Nonviscous, incompressible irrotational, and steady flow can be characterized by

continuous streamlines directed along the fluid velocity at each point that coincide

with the direction of travel of a massless particle. A tube of flow is constructed from

an arbitrary closed loop in a plane perpendicular to the direction of flow bymerging all

the streamlines intersected by the loop. Since the local fluid velocity is parallel to the

streamline, fluid cannot cross the boundaries of such a tube. Fluid flowing into one

end of the tube therefore exits at the opposite end conserving the total mass flux,

i.e., the mass of fluid flowing through any cross-sectional area of the tube. If the fluid
velocity is uniform along each cross section of a tube with varying cross-sectional
area, then in terms of two cross sections with areas A1 and A2 with normal vectors
along the direction of the fluid flow, the equation of continuity takes the form

ρ1v1A1 = ρ2v2A2 = constant ð16.1.1Þ

Alternatively, the change of mass within a fixed spatial volume is given by

dMV

dt
=
d

dt

ð
V
ρ r

!, t
� �

d3r =
ð
V

∂ρ r
!, t
� �
∂t

d3r ð16.1.2Þ

The partial derivative ensures that r! is unchanged. If the volume does not contain
sources or sinks, this change in mass equals the negative of the integrated mass flux
out of the volume

dMV

dt
= −

ð
S�V

ρ v!� d S! = −

ð
V
r!� ρ v!

� �
dV ð16.1.3Þ

where Gauss’s theorem is applied in the second step. Since V is arbitrary,

∂ρ

∂t
= − r! � ρ v

!� �
= −ρr! � v!− v

!�r! ρ ð16.1.4Þ

or

Dρ

Dt
≡

∂

∂t
+ v

!�r!
� �

ρ= −ρr! � v! ð16.1.5Þ

The Stokes operator D/Dt, also often termed the convective, hydrodynamic, or
substantial derivative, evaluates to thechange in thequantity it actsonperunit timealong
the system flow. It can also be derived from the multidimensional Taylor expansion

Df

Dt
= lim

Δt!0

f x+ vxΔt,y + vyΔt,z + vzΔt, t +Δt
� �

− f x,y,z, tð Þ
Δt

ð16.1.6Þ
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which is the rate of change in f with time evaluated between f r!, t
� �

and a second point
infinitesimally displaced in both time and in space according to the fluid motion.

Indeed, the directional derivative v!�r! f for a time-independent function f corresponds
to the distance the fluid travels per unit time multiplied by the change per unit distance
of f in the direction of the velocity and hence is associated exclusively with the change
in f per unit time generated by the fluid motion. If f at a fixed point additionally varies
with time, this induces a further time variation that is independent of the fluid motion
as evident in Equation (16.1.5).

Since Dρ/Dt represents the change in ρ along the flow, for an incompressible fluid

in the absence of sources, Dρ/Dt = 0 and the continuity equation reduces tor! � v! = 0.

Additionally, for steady irrotational flow,r! × v
! = 0. Introducing a potential function,

v
! = − r! ϖv then results in Laplace’s equation for ϖv.

Example

The density of a particular fluid varies with z and t according to ρ = ρ0 + czz + ctt.
If the fluid is flowing at a velocity of 2.0 m/s in the z-direction, in a frame
moving with the fluid, the change of the density with respect to time is
(2(∂/∂z) + ∂/∂t)(ρ0 + czz + ctt) = 2cz + ct. If however, the fluid and frame moves at
a 90� angle with respect to the z-axis, the density change equals ct.

16.2 EULER’S EQUATION

Newton’s law of motion can be applied to the fluid within each volume element ΔV.
For a nonviscous fluid, the force on the fluid element ΔV arises from both external

forces F
!
external = ρΔVa

!
external (e.g., for a gravitational field a

!
external = −gêz) and from

the surrounding pressure. For any constant vector c! from Gauss’s law,

c
!�
ð
S
pdS

!
=
ð
S
pc!� dS! =

ð
V
r! � c!p

� �
dV =

ð
V
c!�r! pdV +

ð
V
p �r

! � c!dV = c!�
ð
V
r! pdV

ð16.2.1Þ

which, since c! is an arbitrary, implies
ð
S
pdS

!
=
ð
V
r! pdV ð16.2.2Þ

Since the force exerted by pressure on the surface of an infinitesimal volume ΔV is

antialigned to dS
!
,

F
!
pressure = −

ð
S�ΔV

pdS
!
= −

ð
ΔV

r! pdV≈ − r! pΔV ð16.2.3Þ
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Newton’s equation of motion then implies that just as an applied force accelerates a
particle as it moves along its trajectory, the acceleration of a fluid element along its
trajectory from the action of the external forces and internal pressure is described by
Euler’s equation for the fluid velocity field, v! x,y,z, tð Þ:

ρΔV lim
Δt!0

v
!
x + vxΔt,y + vyΔt,z+ vzΔt, t +Δt
� �

− v
!
x,y,z, tð Þ

Δt

= ρΔV
D v

!

Dt
= − r! p+ ρa!external
� �

ΔV
ð16.2.4Þ

Here, the convective derivative incorporates the physical displacement of the fluid
element with time.

Example

The velocity field generated by a gravitational field, a
!
external = −gêz, equals

v
! = − êz

ffiffiffiffiffiffiffiffiffiffiffi
−2gz

p
. To obtain this expression, observe that the squared velocity of

a fluid element that is initially stationary at z = t = 0, namely, v2 = − 2gz, is obtained

by equating v
!�r!

� �
v
! = 1=2 ∂v2=∂zð Þêz to the gravitational acceleration.

Additionally, in analogy to the motion of an object over a rough surface, two layers
of a viscous fluid in relative motion experience a tangential shear force at their
interface. The viscosity of a linear Newtonian fluid moving in the x-direction is thus
defined by τ = μ(∂vx/∂y) where μ is the (dynamic) viscosity and τ is the shear stress on
a layer of fluid or a planar surface with a normal in the direction of the velocity
gradient, êy∂vx=∂y. Incorporating this viscous force into Euler’s equation yields the
significantly more complex Navier–Stokes equation.

16.3 BERNOULLI’S EQUATION

From the method presented in Section 8.3 together with the relationship

A
!
× B

!
× C

!� �
= B

!
A
!�C!

� �
− C

!
A
!�B!

� �
,

a
! × r!b × b

!� �
+ b

!
× r!a × a

!
� �

=r!b a
!� b!

� �
− b

!
a
!�r!b

� �
+r!a a

!� b!
� �

− a
!

b
!�r!a

� �

= r!a +r
!
b

� �
a
!� b!

� �
− a

!�r!b

� �
b
!
− b

!�r!a

� �
a
!

a
! × r! × b

!� �
+ b

!
× r! × a

!
� �

= r! a
!� b!

� �
− a

!�r!
� �

b
!
− b

!�r!
� �

a
! ð16.3.1Þ
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Accordingly, for steady-state flow, ∂ v!=∂t = 0, substituting v!�r!v! = v! ×
�
v! × r! �−

r! v2=2 in Euler’s equation together with r! p=ρð Þ = r! p=ρ−pr! ρ=ρ2 and

a
!
external = f

!
external = − r! uexternal, where f

!
and u denote the force field and potential,

yields

r! 1
2
v2 +

p

ρ
+ uexternal

� �
= v

! × r! × v
!

� �
−
pr! ρ

ρ2
ð16.3.2Þ

For irrotational, potential flow, r! × v
! = 0, while for incompressible fluids,

r! ρ = 0 yielding Bernoulli’s equation

1
2
v2 +

p

ρ
+ uexternal = constant ð16.3.3Þ

Hence, liquids or gases traveling at high speeds experience reduced pressure. For a
gravitational potential ϕ = gz, Equation (16.3.3) can be more simply derived by con-
sidering a pipe or a tube of flow with cross-sectional areas and heights A1, h1 and
A2, h2 and pressures p1 and p2 (both directed into the fluid) at its two ends. Displacing
the fluid at the lower end by Δz1 moves the fluid at the opposing, upper, end by Δz2
where by conservation of mass Δm = ρΔVfluid = ρA1jΔz1j = ρA2jΔz2j is identical at
both ends. Equating the work done by pressure and gravity to the kinetic energy
change of the fluid,

p1A1Δz1−p2A2Δz2−Δmg h2−h1ð Þ = 1
2
Δm v22−v

2
1

� � ð16.3.4Þ

With ρAjΔzj =Δm for j = 1, 2, Equation (16.3.4) reproduces Bernoulli’s equation.

Examples

1. For a constant density fluid at rest, Bernoulli’s equation implies thatΔp = − ρgΔz.
Accordingly, for a compressiblemedia such as air with ρ = kp, p(z) = p0 exp(−kgz).

2. If a ball spins such that its upper surface moves more rapidly opposite the direc-
tion of travel than the lower surface, the speed of the air relative to the ball sur-
face is higher and hence the pressure is relatively lower above the ball creating
lift. Similarly, an airplane wing is curved such that air traveling above the wing
travels farther than the air below the wing. Since the two streams recombine at
the end of the wing to avoid a vacuum, the air above the wing again travels
faster.
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17
SPECIAL RELATIVITY

Special relativity expresses the invariance of the vacuum speed of light, c, and of
physical laws in all inertial frames, e.g., frames in which external forces are absent.
This was first evidenced in theMichelson–Morley experiment in which a light beam is
divided by a half-silvered mirror into two identical beams, propagating respectively
along and perpendicular to the direction of the earth’s rotation. After reflection, the
beams are recombined, their interference transforming the phase difference generated
by the differing travel times along the paths into an intensity signal. It was expected
that the phase of the beam propagating in the direction of the earth’s rotation would be
retarded against the direction of the earth’s rotation and advanced in the reverse direc-
tion, resulting on average in a longer travel time and hence net phase delay relative to
the transverse beam. Rotating the apparatus by 90� would then reverse the sign of this
incremental phase difference. The measured interference pattern instead remained
constant, indicating that c does not depend on the propagation direction relative to
the earth’s velocity.

17.1 FOUR-VECTORS AND LORENTZ TRANSFORMATION

The Galilean relativity principle postulates that physical laws are identical for two
observers moving at a constant relative velocity. Mathematically, in two dimensions,
this law is evident from the invariance of Newton’s equations under the forward
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(direct) and reverse (inverse) coordinate transformations (conventions differ as to
which set of equations is termed direct):

x = x0 + vt0 x0 = x−vt
t = t0 t0 = t

ð17.1.1Þ

between the unprimed frame and a primed frame moving at a relative velocity + v. The
Maxwell equations, which incorporate first derivatives of the individual fields, are not
invariant under the above transformation; rather, they are invariant under the Lorentz
transformation, Equation (17.1.5). Einstein accordingly postulated that Newton’s laws
must bemodified such that they were similarly invariant under Lorentz transformations.
Indeed, the independence of c on the reference frame relates spatial and time intervals
such that the time interval Δt between two events in the unprimed frame is different
from that of Δt 0 between the same two events in the primed frame. For example, if
in a given coordinate frame F light emitted from a source point, xs, is detected simul-
taneously at two receivers, Pr,right at xs + a and Pr,left at xs − a, equally spaced from the
source, since light also travels at speed c in a frame F0 moving at a velocity v in the + x
direction relative toF, in F0, the light arrives first at the point,Pr,right, moving toward the
source and only subsequently arrives atPr,left. These events therefore differ in time by an
amount proportional to their physical separation.

To incorporate the constant speed of light in all inertial frames, the Galilean trans-
formation must be modified. Since the Galilean result must however be recovered at
small, nonrelativistic velocities v� c while the forward and reverse transformations
differ only by the choice of reference frame and the transformation should be linear
with respect to both space and time, the simplest alternative is

x= γ vð Þ x0 + vt0ð Þ x0 = γ vð Þ x−vtð Þ ð17.1.2Þ

For an infinitely short light pulse, t = x/c in F, while t0 = x0/c in F0. Combining the
equations according to x = γ(1 + v/c)x0 = γ2(1 − v2/c2)x gives

γ =
1ffiffiffiffiffiffiffiffiffiffiffi
1−

v2

c2

r ð17.1.3Þ

To find the time transformation law, observe that

x0 = γ γ x0 + vt0ð Þ−vtð Þ

t = γt0−
x0

vγ
1− 1−

v2

c2

� �−1 !
= γ t0 +

vx0

c2

� � ð17.1.4Þ

Since Fmoves at a relative velocity of − vwith respect to F 0, the inverse Lorentz trans-
formation is obtained by interchanging primed by unprimed quantities and v by − v in
the above equation. The three-dimensional Lorentz transformation for relative
motion in the x-direction is, with β<≡ v/c < 1 and γ>≡ (1 − β2)−1/2 > 1,

216 SPECIAL RELATIVITY



x = γ > x0 + β < ct
0ð Þ, y= y0, z = z0, ct = γ > ct0 + β < x

0ð Þ ð17.1.5Þ

The quantities x and t are imaginary for v > c, indicating that physical velocities cannot
exceed c.

An event coordinate (x, ct) is defined as the spatial point and c multiplied by the
time at which a certain event occurs. The invariance of the speed of light in any inertial
frame implies that if a light signal is respectively emitted and detected at x

!
s,cts

� �
and

x
!
r,ctr

� �
in a frame F, then with Δ r!,cΔt

� �
= x

!
r −x

!
s,c tr − tsð Þ� �

while primed quantities
denote the corresponding values in F0,

Δ~sð Þ2 ≡ cΔtð Þ2−Δr!�Δ r
! = Δ~s 0ð Þ2 = cΔt0ð Þ2−Δr!0 �Δr!0 = 0 ð17.1.6Þ

More generally, the Lorentz transformation, expressed in terms of space and time
intervals,

Δx = γ > Δx0 + β < cΔt0ð Þ, Δy =Δy0, Δz=Δz0, cΔt = γ > cΔt0 + β <Δx0ð Þ ð17.1.7Þ

similarly preserves the space–time interval (Δs)2 between any two event coordinates,
which is therefore termed a relativistic scalar quantity.

17.2 LENGTH CONTRACTION, TIME DILATION,
AND SIMULTANEITY

An object of length Δxrest in its rest frame, Frest, where the positions of its two ends of

the object are measured simultaneously withΔt = 0, possesses a lengthΔx0 in F0 meas-

ured withΔt0 = 0. InsertingΔt0 = 0 into Equation (17.1.7) yields (a common error is to
associate identify correctly Δx0 in Eq. 17.1.7 with Δt0 = 0 as the rest length; however,
the observations in F are then taken with Δt 6¼ 0)

Δx0 =
Δxrest,Δt0 = 0

γ >
≤Δxrest,Δt0 = 0 =

ffiffiffiffiffiffiffiffiffiffiffi
1−

v2

c2

r
Δxrest,Δt0 = 0 ð17.2.1Þ

which is termed Lorentz contraction. Measurements of the object’s front and rear
positions that are simultaneous in F however differ in time by Δt0 in F0 according
toΔt0 + vΔx0/c2 = 0. The quantityΔxrest is termed the proper length since in all frames
(Δs)2 = −(Δxrest)2.

The time interval between two events that occur in the rest frame of a moving object

such that a single clock is present at the locationofboth events andhenceΔx0 = 0 is smaller

than the time dilated interval in F where the events occur at different places. Since

Δt = γ >Δt
0
rest,Δx0 = 0 >Δt

0
rest,Δx0 = 0 ð17.2.2Þ
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the quantity τ≡Δt0rest,Δx0 = 0, termed the proper time, constitutes the smallest time
difference between the two events observed in any reference frame. While a spatial
volume element is Lorentz contracted by 1/γ> in a moving frame, time dilation
involves multiplication by γ>. Hence, the space–time volume element dς = cdtdV is
invariant and constitutes a scalar under Lorentz transformations.

A second derivation of the above results employs a clock consisting of a vertical light
ray that reflects betweenmirrors along z = 0 and z = a in a frameF0 traveling at velocity v
with respect to frame F. Figure 17.1 shows the resulting path of the light ray as observed
fromF. The time required for a light beam traveling perpendicular to themirrors to reflect
from thebottom to the topmirror andback in the rest frame is given in the rest frameof the
moving clock by Δt0rest,Δx0 = 0 = 2a=c. However, in the rest frame, F0, of the moving
clock, in F, the two points at which the beam intersects the bottom mirror are spatially

separated such that the beam travels a distance d = cΔt = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vΔt=2ð Þ2 + a2

q
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vΔtð Þ2 + cΔt0rest,Δx0 = 0
� �2r

, which reproduces Equation (17.2.2) after solving for Δt

(observe that transverse distances are unaffected by longitudinalmotion). Further, if a sin-
gle, stationary point in the moving frame F0 passes over an object at rest in a frame F, the
length of the object,Δxrest, is vΔt asmeasured inF and vΔt0rest,Δx0 = 0 in F0. Consequently,
Δxrest,Δt = 0=Δx0 = Δt=Δt0rest,Δx0 = 0 = γ > , in agreement with Equation (17.2.1).

Examples

An object at rest with rest length L in a moving frame F0 is Lorentz contracted when
viewed in a stationary frame F and therefore can seemingly be contained in a smal-
ler region, R < L. In F0 however, R is instead contracted and therefore cannot
enclose the object. However, these statements do not contradict each other as
the times at which the front and the back of the object are simultaneously enclosed
in R in F are not simultaneous in F0. Similarly, a moving object of rest length L in

a

FIGURE 17.1 Light ray in a moving frame.
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F0 can drop through a hole of a similar length in frame F in which it is additionally
Lorentz contracted. In the frame F0 moving along with the object, however, the
hole is Lorentz contracted, and hence, the object should not be able to pass through
it. Thus, rigidity is not a relativistic invariant as in F0 the front end of the object
bends downward to enter the hole.

If an object travels to a distant point at a velocity vwith respect to a rest frame F
and then returns with the same velocity, the time in F advances more rapidly than
that experienced by the object as a result of time dilation. conversely, if the moving
frame F0 is employed as the rest frame, the time in F instead appears retarded
during both the outgoing and incoming segments from the transformation inverse
to Equation (17.1.7). However, at the midpoint of travel, F0 accelerates from + v to
−v during which a long period of time elapses at the position of a stationary object
in F as observed from F0. While the clocks of F initially appear progressively
more retarded at smaller x as viewed from F0 with Δt0 = 0 so that cΔt = β<Δx
(from the transformation inverse to Eq. 17.1.7 when the velocity is reversed),
these clocks instead appear increasingly advanced.

17.3 COVARIANT NOTATION

Just as the manner in which a set of equations transform under rotation or translations
can be clarified by recasting the participating quantities as vectors, matrices, or sca-
lars, rewriting expressions in terms of four-dimensional space–time tensor quantities
elucidates their transformation properties between different inertial frames. Physical
variables that transform according to the standard Lorentz transformation are repre-
sented by contravariant four-vectors with Greek superscripts, which we here distin-
guish by column vectors (T denotes transpose) and, when expedient, the subscript C.
Thus, the space–time four-vector is written as

xμ = x0, x1, x2, x3
� �T

C = ct,x,y,zð ÞTC ð17.3.1Þ

As well, we introduce contravariant quantities with the property that inner products

(contractions) CR or RC can only be formed between a C quantity and a covariant

R quantity and yield scalar, frame-independent results. The gradient with respect to a

contravariant space–time vector is covariant and is therefore represented below
by a row vector and the subscript R since, by the definition of the directional
derivative,

Δf =
∂f

∂xμ
Δxμ ≡ ∂μ f

� �
Δxμ ð17.3.2Þ

where Δf is the change in the scalar function f(x, t) over the displacement Δxμ (the
derivative ∂μ≡ ∂/∂xμ is contravariant). From the two types of vectors, four different
matrices or rank two tensors, Aνμ, Aμ

ν, Aν
μ, and Aνμ, termed contravariant, mixed, and
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covariant, respectively, can be defined such that, e.g., the outer product of two contra-
variant vectors yields a contravariant tensor

AμBν ≡AC�BC ≡

A0

A1

A2

A3

0
BBBB@

1
CCCCA
C

� B0 B1 B2 B3ð ÞC =

C

A0B0 A0B1 A0B2 A0B3

A1B0 A1B1 � � �

A2B0
..
. . .

.

A3B0

0
BBBBB@

1
CCCCCA
C

ð17.3.3Þ

Contracting (multiplying), e.g., Aμv with a covariant vector according to AμvBv, where
a sum is performed for each identical pair of lower and upper indices, results in a con-
travariant vector, while similarly contracting Aμ

ν with Bv yields a covariant vector.
A matrix corresponding to Aμ

ν is therefore distinguished with left- and right-hand sub-
scripts R and C, and a dot product (contraction) can only be carried out between an
adjacent R and a C subscripted quantity with the two affected subscripts subsequently
eliminated. The rank 2 (matrix) metric tensors given by

gμσ =

R

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

0
BBB@

1
CCCA
R

gμσ =

C

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

0
BBB@

1
CCCA
C

ð17.3.4Þ

are defined such that, e.g., AμgμνA
ν yields the square of the invariant scalar length

of the four-vector Aν. As evident from, e.g., direct multiplication, gμνg
νδ = δμδ where

δμδ represents the 4 × 4 identity matrix for which xμ = δμδxδ.
A linear transformation xi =

X
j
cijx0j illustrated by the system of two linear equa-

tions below can be written in matrix form as, where the subscript x inr! 0
x indicates that

r! must be rearranged to act exclusively on x,

x0
x1

� �
=

∂00x0 ∂01x0
∂00x1 ∂01x1

 !
x00
x01

 !
= x

!� r!0
x

� �
x
!0 = r! 0� x

!
� �T

x
!0 ð17.3.5Þ

From this, the Lorentz transformation or boost of Equation (17.1.5) is represented by
the tensor

Lν
μ =

C

γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA
R

ð17.3.6Þ
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with xν = Lνμx0
μ and

Lν
μ =

∂xυ

∂x0μ
ð17.3.7Þ

A rotation through, e.g., an angle θ around the z-axis is similarly described by

Rν
μ =

C

1 0 0 0

0 cosθ − sinθ 0

0 sinθ cosθ 0

0 0 0 1

0
BBBB@

1
CCCCA
R

ð17.3.8Þ

17.4 CASUALITY AND MINKOWSKI DIAGRAMS

Space–time events in a reference frame F can be described by points in four-
dimensional Minkowski space, a two-dimensional, (ct, x), cross section of which is
normally depicted as in Figure 17.2. The path or “world line” of an object with a con-
stant x-velocity v in F is the line, ct = βx, corresponding to the spatial, x0, axis of its rest

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

l

l′

x′

x

ct′ct

FIGURE 17.2 Minkowski diagram.
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frame F0. The ct0 axis of F0, given by x0 = x − βct0 = 0, similarly corresponds to the line
ct = cx/v = x/β. Consequently, the primed axes possess reciprocal slopes and describe
equal angles with respect to the rectangular axes of F. The coordinates (ct0, x0) in F0 of
an event given by (ct, x) in F are obtained graphically as the intercepts of the lines
through (t, x) parallel to the x0 and ct0 axes with these axes. Intervals in a
Minkowski diagram equal s2 = c2t2 − x2; hence, if an object at rest in the frame F pos-
sesses a length l, its length in a frame F0 moving at a velocity v relative to F is given
by the (larger) value, l0, of the point of intersection, r in Figure 17.2, of the x0 axis of
F0 with the hyperbola s2 = −l2.

An event occurring at the origin of a Minkowski diagram can communicate with a
second event situated anywhere along the lines x = ± ct, termed the light cone, through
the propagation of a light ray. If the coordinates of the second event are situated below
the light cone, a frame F0 exists for which the x0 axis passes through this event. In this
frame, both events occur at the same time, and the interval between the events is
accordingly termed space-like. In frames with respectively smaller and larger
velocities than F0, the second event, if located in the first quadrant, occurs after
and before the event at the origin. As a result, for a space-like interval, unless the frame
in which the two events occurred is specified, a conclusion cannot be drawn regarding
which event could have caused the other event. An interval from the origin to a second
event above the light cone is termed time-like. While a frame then exists in which both
events occur at the same place, for all frames, the second event follows the first.

17.5 VELOCITY ADDITION AND DOPPLER SHIFT

Classically, if an object moves at a velocity v
!
object relative to an inertial frame,

Fobject frame, that in turn moves with a velocity v
!
object frame, relative to a second inertial

frame, Fobserver an observer in the second frame measures an object velocity
v
!
object, observer = v

!
object + v

!
object frame. However, this would imply the existence of object

velocities greater than c as viewed from the second frame. Relativistically, for v!object
and v!object frame along the x-direction, if a particle’s coordinates measured in Fobject frame

change by an amount dxobject over an infinitesimal time interval dtobject, Lorentz trans-
forming into Fobserver yields

dxobject, observer = γobject frame dxobject + vobject framedtobject
� �

dtobject, observer = γobject frame dtobject +
vobject frame

c2
dxobject

� � ð17.5.1Þ

so that

vx,object,observer =
dxobject,observer
dtobject,observer

=
vx,object + vobject frame

1 +
vx,objectvobject frame

c2

ð17.5.2Þ
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which cannot exceed c. Because the form of Equation (17.5.2) is identical to that of

tanh a + bð Þ= sinh a+ bð Þ
cosh a + bð Þ =

sinhacoshb + coshasinhb
coshacoshb+ sinhasinhb

=
tanha+ tanhb
1 + tanha tanhb

ð17.5.3Þ

defining the rapidity χv/c by v/c = tanh χ yields χobject, observer = χobject + χobject frame.
Additionally, from dzobject, observer = dzobject,

vz,object,observer =
dzobject,observer
dtobject,observer

=

vz,object

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

v2object frame

c2

s

1 +
vx,objectvobject frame

c2

ð17.5.4Þ

If the object travels at an angle θobject with respect to the x-axis (e.g., sin θobject =
vz,object/vobject) in frame Fobject, dividing Equation (17.5.4) by Equation (17.5.2) and
then further dividing the numerator and denominator of the right-hand side of the
resulting expression by vobject =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vz,object2 + vx,object2

p
yield in Fobserver

tanθobject, observer =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

v2object frame

c2

s

cosθobject +
vobject frame

vobject

sinθobject ð17.5.5Þ

The corresponding formula for a light ray is obtained by setting vobject = c in the
above equation.

The relativistic Doppler effect (in one spatial dimension) arises when a source in a
frame Fsource emits light with frequency fsource while traveling at a velocity v relative
to a receiver that is stationary in a frame Fobserver. Since the phase of a wave,

ϕ= k
! � r!−ωt, divided by 2π yields the number of waves between two phase fronts

that is identical in any inertial frame,
�
ω=c, k

!�
T

C
comprises a four-vector and therefore

ωobserver = γ(ωsource + βcksource). For a light beam with ωsource = 2πfsource = cksource,
ωobserver = γ(1 + β)ωsource, yielding for the frequency detected in Fobserver

fobserver = fsource

ffiffiffiffiffiffiffiffiffiffi
1 + β
1−β

s
ð17.5.6Þ

17.6 ENERGY AND MOMENTUM

Since the infinitesimal metric ds = cdτ = cdt/γ reduces for small velocities to cdt, a
velocity four-vector with a spatial component that coincides with γ times the non-
relativistic velocity, v!NR = d r

!
=dt, is defined as
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vμ = c
dxμ

ds
= γ c,v!NR
� �T

C
ð17.6.1Þ

Multiplying the velocity four-vector by mc then yields the corresponding energy–
momentum four-vector (E and p are the relativistic energy and momentum), which
is also often written without the additional factor of c:

pμ =mcvμ = γ mc2, p!NRc
� �T

C ≡ E, p!c
� �T

C ð17.6.2Þ

with pμpμ =m2c4, which for a photon with zero rest mass mγ = 0 yields E = pc. For
small v, a Taylor series expansion yields for p0

mc2 1−
v2

c2

� �−1
2

!mc2 +
1
2
mv2 +… ð17.6.3Þ

corresponding to the sum of the classical kinetic energy of the particle and its rest
energy, which quantifies the maximum energy that can be extracted from a stationary
particle of a given mass.

The momentum and energy of an isolated particle can also be obtained by replacing
the nonrelativistic free particle Lagrangian L = T −U = T =mv2/2 by the Lorentz
scalar

Lrelativistic = −mc2 +
1
2
mv2 ! −mc2

ffiffiffiffiffiffiffiffiffiffiffi
1−

v2

c2

r
≈ −

ffiffiffiffiffiffiffiffiffiffi
pμpμ

p ð17.6.4Þ

The action is then

S=
ðt2
t1

Lrelativisticdt = −mc

ðt2
t1

ffiffiffiffiffiffiffiffiffiffiffiffi
c2−v2

p
dt = −mc

ðxμ t2ð Þ

xμ t1ð Þ
ds ð17.6.5Þ

This yields p! =r! v Lrelativistic =mv!=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2=c2

p
, and energy E = p

! � v!−Lrelativistic =
mc2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2=c2

p
as above, while consistent with E2 = p2c2 +m2c4, the Hamiltonian

is given by Hrelativistic =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 +m2c4

p
.

Finally, the force four-vector satisfies the relativistic analogue of Newton’s
equations, namely,

f μ =
dpμ

ds
=
γ

c

dpμ

dt
= γ

1
c

dE

dt
,
d p!

dt

� �T

C

ð17.6.6Þ

For a constant force F
!
acting on an initially stationary object in an inertial frame,

d p
! = F

!
dt from the spatial part of Equation (17.6.6), so that F

!
t = p

! =mv
!
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−v2=c2
p

. Solving for v
!,
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mv
! =

F
!
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 +
Ft

mc

� �
2

s ð17.6.7Þ

Thus, while the particle momentum increases linearly with time, the velocity
approaches c asymptotically for large times.

When the force and velocity are not parallel, dp!=dt and dv
!
=dt are related by

dp
!

dt
=
d

dt

mv
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

v!� v!
c2

r =
m

1−
v
!� v!
c2

� �3
2

d v
!

dt
1−

v
!� v!
c2

	 

+ v

! d v
!

dt
� v!

	 
� �
ð17.6.8Þ

If d v
!
=dt and v!are parallel, the dot products are replaced by ordinary products yielding

dp!

dt

����
k
=mγ

3
2
dv!

dt
ð17.6.9Þ

while if they are perpendicular,

dp!

dt

����
⊥
=mγ

dv!

dt
ð17.6.10Þ

Further, since E2 = c2p2 +m2c4,

2E
dE

dt
= 2c2 p!� d p

!

dt
ð17.6.11Þ

or, dividing by 2E,

dE

dt
=
c2

E
p
!� d p

!

dt
= v

!� F! ð17.6.12Þ

so that

dE = F
! � v!dt = F

! � d r! = dW ð17.6.13Þ

demonstrating that the work–energy theorem W =ΔE can be applied relativistically.
Relativistic energy–momentum conservation requires that the sum of the four-

vectors pμ of all interacting particles is conserved in collisions if the external force
on a system f μ = dpμ/dt = 0; i.e.,

X
m2 incoming

pμm =
X

n2outgoing

pμn ð17.6.14Þ
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These equations are often solved by contracting with appropriate covariant momen-
tum four-vectors and employing the independence of the resulting scalar quantity on
the reference frame.

Examples

If particles of mass m1 and m2 are generated by the decay of a particle of mass m >
m1 +m2,

mc2

0

� �
=

E1

cp1

� �
+

E2

cp2

� �
ð17.6.15Þ

Hence, mc2 = E1 + E2 and p!1 = −p!2. However, c
2p21 = c

2p22 implies, since E2 −

c2p2 = m2c4, E2
1 −m

2
1c

4 =E2
2 −m

2
2c

4 = mc2−E1ð Þ2−m2c4 so that E1 = c2 m2 +ð
m2

1−m
2
2Þ=2m.

For an inelastic collision between a particle with energy E1 and mass m1 with a
second stationary particle of mass m2 that generates a particle with mass m and
momentum and energy E and p,

E
cp

� �
=

E1

cp1

� �
+

m2c2

0

� �
ð17.6.16Þ

Equating the squares, pμp
μ, of both sides of the above equation yields

E2−c2p2 =m2c4 = E1 +m2c2ð Þ2−c2p21 = E1 +m2c2ð Þ2− E1
2−m2

1c
4

� �
and therefore

m2c4 = m2
1c

4 +m2
2c

4 + 2m2c2E1.
Finally, an elastic collision of a particle with mass m1 with a stationary par-

ticle with mass m2 conserves both particle masses but transforms pμ1 ,p
μ
2 to p0μ1,p

0μ
2

such that pμ1 + p
μ
2 = p

0μ
1 + p

0μ
2. Since p

!
2 = 0,

E0
2

c p
!0
2

 !
=

E1

cp
!
1

� �
|fflfflffl{zfflfflffl}

pμ1

+
m2c2

0

� �
|fflfflfflfflffl{zfflfflfflfflffl}

pμ2

−
E0
1

c p
!0
1

 !

|fflfflfflffl{zfflfflfflffl}
pμ3

ð17.6.17Þ

Squaring both sides of this equation results in

m2
2c

4 = m2
1c

4|ffl{zffl}
pμ1p1μ

+ m2
2c

4|ffl{zffl}
pμ2p2μ

+ m2
1c

4|ffl{zffl}
pμ3p3μ

+ 2m2c
2 E1−E

0
1

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

pμ2 p1μ −p3μð Þ
−2 E1E

0
1−p1p

0
1; cosθ1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

−pμ1p3μ

ð17.6.18Þ

from which, e.g., the scattering angle, θ1, of particle 1 can be derived after some
algebra.
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18
ELECTROMAGNETISM

Charged particles give rise to electric and magnetic fields. As time variations in one of
these fields induce changes in the second field, electromagnetism is divided into the
electrostatics and magnetostatics of time-independent, uncoupled fields and the elec-
trodynamics of time-varying field distributions.While electromagnetic fields in media
can experience, e.g., direction-dependent or nonlinear forces, only linear, isotropic
(uniform) media are considered here.

18.1 MAXWELL’S EQUATIONS

Before electrostatics and electrodynamics are reviewed in detail, the heuristic struc-
ture of Maxwell’s equations is introduced in this section with emphasis on units,
which are somewhat nonintuitive. The Maxwell’s equations describe the mutual cou-
pling of electromagnetic fields as well as their relation to charge and current sources.
Their underlying structure is partially clarified by considering incompressible fluid
entering at a constant rate into the center of a large, filled container. While the fluid
can additionally circulate, the amount of fluid flowing per unit time through any
sphere of surface area 4πr2 centered at the source (in fact any surface enclosing
the source) equals the rate at which the fluid is injected, independent of the fluid prop-
erties. Hence, the radial component of the velocity vector averaged over a sphere with
radius r about the origin varies as 1/r2. The force that the fluid exerts on a standardized
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test object however additionally depends on the medium properties, particularly the
viscosity and the effective cross-sectional dimension of the object. Dividing the force
by this dimension converts the velocity field into a second, physically relevant, force
field. By analogy, in electromagnetism, besides the radial fields generated by isolated
charges, in atoms and molecules, positive and negative charges exist in close proxim-
ity to each other. Applying, e.g., an electric field to a material separates these charges,
creating an array of closely separated positive and negative charge pairs or dipoles.
As each dipole has zero net charge, the net field sourced by a dipole is zero over
macroscopic distances, but its field lines circulate from the positive to the negative
charge, possibly generating a further medium and external field-dependent circulation.

Maxwell’s equations accordingly comprise source equations that relate “source,”
largely medium-independent unmediated fields analogous to the fluid velocity to the
charge and current distributions and equations for “force” fields directly associated
with forces. Mediated and unmediated quantities cannot occur in the same equation
unless a medium-dependent factor such as the conductivity, electric permittivity, or
magnetic permeability is present. Otherwise, changing the material would alter some
terms in the equation but not others.

Gauss’s law relates free, isolated physical charges to the divergence (but not the
curl, e.g., rotation, which can be influenced by the presence of charged dipoles at
microscopic length scales) of an electric displacement source field:

r! �D! sourceð Þ
= ρfree ð18.1.1Þ

In SI (international system) units, charge is measured in Coulombs, with the electronic
charge

qelectron = −e = 1:6 × 10−19 Coulombs Q½ � ð18.1.2Þ

so that the units of electric displacement are Coulombs per meter squared or

D
!h i

=
Coulombs
meter2

� �
=

Q

D2

� �
ð18.1.3Þ

The charge per unit volume of a material, ρfree, is termed the charge density. For a
point charge q at r!0, when the volume element d3r is centered at r 0, ρfree r

!� �
d3r = q,

which is expressed as ρfree r!
� �

= qδ r!−r!0
� �

. If the charge distribution is confined to
a thin wire, multiplying the charge density by the cross-sectional area of the wire
yields the charge per unit length, λ while for a surface charge distribution confined
to a layer of thickness Δz, multiplying the charge density by Δz yields the charge
per unit area, σ; i.e.,

ρd3r = σΔA= λΔL=Δq ð18.1.4Þ

Thus, by superposition, summing an expression over point charges implies a combi-
nation of a volume, surface, and line integrals over ρ, σ, and λ, where charges, respec-
tively, form a continuous density distribution, a thin surface layer, and a thin rod.
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Moving charges and a time-varying displacement field provide sources for the

magnetic field, H
!
, according to Ampere’s law:

r! ×H
! sourceð Þ

= J
!
free +

∂D
!

∂t

sourceð Þ
ð18.1.5Þ

The free current density J
!
free is defined as the free charge passing through a unit cross-

sectional area per unit time (and thus should actually be termed the free current flux).

That is, if ρdensity carriers per unit volume with charge q flow with a velocity v
! in a

material, the charge passing through a surface element ΔA oriented perpendicularly to

v! over a time Δt is given by ΔQ = qρdensityvΔAΔt corresponding to J
!
free =ΔQ=

ΔAΔtð Þ = qρdensity v!. For currents confined to a depth Δz below the surface of a mate-

rial or to a thin wire of cross-sectional area A, the surface current density K
!
= J

!
Δz and

current are related by

J
!
A= K

!
L= Iê

l
! Amperes½ �= Q

T

� �
ð18.1.6Þ

where L is a length element measured along the surface over which the current flows
in the direction perpendicular to the current and ê

l
! is a unit vector along the wire in

the direction that the current flows so that Iê
l
!dl= Id l

!
where d l

!
is a differential length

element along the wire. Inside an integral, the above relationship is expressed as

J
!
d3r = K

!
dA= Id l

! ð18.1.7Þ
As the units of Jfree are [Amperes/m2], those of the magnetic field are

H
! sourceð Þ� �

=
Amperes
meter

� �
=

Q

DT

� �
ð18.1.8Þ

Corresponding to the source fields are force fields that are affected by material proper-
ties and are directly related to forces by the Maxwell force law:

F
!
= q E

! forceð Þ
+ v

! ×B
! forceð Þ� �

ð18.1.9Þ

which describes the force on a test charge qmoving with velocity v! in the presence of

the electric field, E
!
, and the magnetic induction, B

!
. The units of the electric field and

magnetic induction are consequently

E
! forceð Þ� �

=
force

Columb

� �
=

MD

QT2

� �
≡

volts
meter

� �
=

V

D

� �

B
! forceð Þ� �

= E
! forceð Þ

v
!

" #
=

M

QT

� �
=

webers
meter

� �
≡ telsa½ �

ð18.1.10Þ
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One tesla expressed in cgs units equals 104 Gauss. The magnetic field at the surface
of a neodymium magnet reaches ≈ 1.25 T, while the earth’s magnetic field is ≈ 0.5 G
and the field of a refrigerator magnet ≈ 50 G. The electric field for breakdown
(sparking) in air is ≈ 108V/m, while a field of ≈ 107V/m is required to ionize atoms
generating a free conducting electron in, e.g., Si.

Two additional Maxwell’s equations then state first that

r! �B! forceð Þ
= 0 ð18.1.11Þ

indicating that magnetic charges analogous to electric charges do not exist, while
Faraday’s law of induction

r! ×E
! forceð Þ

= −
∂ B

!

∂t

forceð Þ
ð18.1.12Þ

implies that a time-varying magnetic induction induces an electric field.
The motion of carriers in a conductor results from the force provided by the electric

and magnetic field and additional forces if present, resulting in an additional equation

J
!
= σ E

! forceð Þ
+ v

! ×B
! forceð Þ

+ possible other forces

� �
ð18.1.13Þ

In most materials and cases of interest, this reduces to J
!
= σ E

!
, which is the local

expression of Ohm’s law, V = IR, where the conductivity, σ, possesses units of

(Ω-cm)− 1. Note that the symbol employed to represent the conductivity is identical

to that for surface charge, which can occasionally be misleading. This relationship

between force fields and sources enables any ratio of source and force fields to be

expressed in electrical units, i.e., in terms of those of R,C, and L with the capacitance

C =Q/V in Farads or equivalently [C] = [Q/IR] = [s/Ω] and inductance L, defined by

V = −LdI/dT, in Henrys or [L] = [VT/I] = [IRT/I] = [Ω-s]. In particular, since the units

of H
!
are those of J

!
, and therefore σ E

!
, times distance, the ratio

Z =
E
! forceð Þ

H
! sourceð Þ

������
������

volt=m½ �
Amperes=m½ � =

E
! forceð Þ

H
! sourceð Þ

������
������ Ω½ � ð18.1.14Þ

termed the impedance possesses units of ohms.

The fields E
!
and D

!
are related by the material-dependent dielectric permittivity, ε,

D
! sourceð Þ

= εE
! forceð Þ

= ε0εrE
! forceð Þ ð18.1.15Þ

where

ε0 = 8:85 × 10
−12 D

!
E
!h i

=
Q

D2

� �
D

V

� �
≡

C

D

� �
=

Farads
meter

� �
ð18.1.16Þ
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is termed the vacuum permittivity, while the dimensionless quantity, εr, represents the
relative permittivity, which in the general case can be a spatially varying, nonlinear,
anisotropic, and/or time-dependent function of the electric field. The ratio between the
magnetic induction and the magnetic field is denoted

B
! forceð Þ

= μH
! sourceð Þ

= μoμrH
! sourceð Þ ð18.1.17Þ

in which the magnetic permeability, μ, is the product of the dimensionless relative
permeability, μr, and the magnetic permeability of free space, μ0,

μ0 = 4π × 10
−7 B

!

H
!

" #
=

B
!

E
!

" #
E
!

H
!

" #
=

T

D

� �
Ω½ �≡ L

D

� �
=

Henrys
meter

� �
ð18.1.18Þ

The vacuum permittivity and permeability satisfy the relationship, to be demon-
strated later,

c20 =
1

μ0ε0
=
D2

LC
=

D2

TΩTΩ−1

� �
=

D2

T2

� �
ð18.1.19Þ

where the vacuum velocity of light, c0≈ 3.0 × 108 m/s. In a magnetically activemate-

rial μr which again can depend in a complicated fashion on H
!
, differs from unity as

electronic or nuclear spins align along or opposite to the direction of an applied mag-
netic field.

The differential form of Maxwell’s equations above can be transformed to integral
expressions. Integrating Gauss’s law over any volume ς

ð
ς
r! � D!d3r =

ð
ς
ρfreed

3r ð18.1.20Þ

yields after applying Gauss’s theorem, Equation (8.4.1),

þ
S�ς

D
! �dS! =Qfree, enclosed ð18.1.21Þ

where the closed Gaussian surface S is described by the boundary of ς, Qfree, enclosed

denotes the total free charge enclosed by the surface, and the differential area element

dS
!
is directed perpendicular to the surface in the outward direction from the enclosed

volume. Similarly, Equation (18.1.11) for the magnetic induction implies

þ
S�ς

B
!�d S! = 0 ð18.1.22Þ

Integrating Ampere’s law, Equation (18.1.5), over a surface that intersects the current
source
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ð
S
r! × H

!	 

�d A! =

ð
S

J
!
free +

∂D
!

∂t

 !
�d A! ð18.1.23Þ

and employing Stokes’ theorem, Equation (8.4.2), results in

þ
C�S

H
! �dl!= Ifree, enclosed + ∂

∂t

ð
S
D
! �d A! ð18.1.24Þ

in which Ifree, enclosed is the total current of free charges that passes through the surface

S bounded by C. The direction of dl
!
follows the right-hand rule that if dA

!
points in the

direction of one’s right thumb, the fingers curl in the direction of positive dl
!
, e.g.,

counterclockwise when viewed from the region pointed to by the surface vector.
Any solution of Maxwell’s equations must be consistent with charge conservation,

i.e., the charge flowing out of a volume equals the negative of the time rate of change
of the total charge within the volume,

∂

∂t
Qenclosed =

∂

∂t

ð
ς
ρd3r = −

þ
S�ς

J
!� d A! ð18.1.25Þ

as JdAcosθ
J
!
,dA

! corresponds to the current passing through a surface element dA
!

oriented at θ
J
!
,dA

! with respect to J
!
. Applying Gauss’s theorem to the surface integral

yields
∂

∂t

ð
ς
ρd3r = −

ð
ς
r! � J!d3r ð18.1.26Þ

In the limit that V represents an infinitesimal volume, this yields the charge continuity
equation

∂ρ

∂t
+ r! � J! = 0 ð18.1.27Þ

This equation can be derived directly by noting that for the current component in,
e.g., the x-direction, if Ix(x) is the component of the total current along the x -direction
flowing into a region with transverse cross section A and lengthΔx andΔQx(x +Δx/2)
is the change in the total charge in the volume associated with this current component
so that Δρ =Δρx +Δρy +Δρz,

∂Jx
∂x

=
1

AΔx
Ix x +Δxð Þ− Ix xð Þð Þ= −

1
AΔxΔt

ΔQx x +
Δx
2

� �
= −

∂ρx
∂t

ð18.1.28Þ

That Maxwell’s equations are consistent with charge conservation follows by apply-
ing the divergence operator to both sides of Ampere’s law, Equation (18.1.5), and

applying Gauss’s law, Equation (18.1.1), to r! � D!.
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Finally, Faraday’s law, Equation (18.1.12), can be rewritten as

þ
C�S

E
!�d l!= −

∂

∂t

ð
S
B
!�d�A ð18.1.29Þ

In time-invariant systems, Maxwell’s equations separate into independent equations

for the electric and magnetic fields

r! � D! = ρfree r! � B!= 0
r! × E

!
= 0 r! × H

!
= J

!
free

ð18.1.30Þ

These are analyzed separately in electrostatics and magnetostatics.

18.2 GAUSS’S LAW

From the linearity of the divergence and curl operators, which satisfy the relationship

D
�
F
!
1 +F

!
2
�
=DF

!
1 +DF

!
2 for D representing either operator, if μ and ε do not depend

on the field strengths, summing the individual solutions ofMaxwell’s equations for each

N sources yields the solution in the presence of all the sources. The fields generated by

any charge distribution can consequently be obtained by dividing the distribution into

infinitesimal elements and superimposing the vector fields generated by each element

through summation or integration. However, for highly symmetric charge distributions,

the integral forms of Maxwell’s equations can instead be employed directly. That is,
knowledge of the integral of a function over an interval does not in general determine
the value of the function at each point in the interval. However, if the function exhibits
symmetry with respect to displacements, it possesses a constant value over the interval
equal to its integral over the interval divided by the interval length. Similarly, if the elec-
tric field is invariant with respect to displacements over a Gaussian surface, S, as below,
its surface integral over S, which is proportional to the charge enclosed by S, divided by
the area, A, of S equals its value at each point on S:

• Point charge: The electric field of an isolated point charge q at r!0 in an infinite
homogeneous medium is rotationally invariant about the particle position. The
field must therefore be constant and radially directed over a Gaussian surface
S given by a sphere centered at the point charge with radius r (since any nonradial
component can be transformed into its negative through a rotation). Therefore,

since dS
!
is directed radially outward from r

!0 while A = 4π r
!
−r

!0�� ��2, Gauss’s law
yields, in a medium with a dielectric permittivity ε = ε0εr,

E
!

r
!� �= 1

ε
D
!

r
!� �= q

εA
êr!−r!0 =

q

4πε0εr r
!
−r!0

�� ��2 êr!−r!0 ð18.2.1Þ
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• Infinite charged line: The field of an infinite uniform line, e.g., r = 0 in cylin-
drical coordinates with a charge per unit length λ is invariant with respect to
translations and rotations along the z-axis and reflection in the z = 0 plane and
is therefore cylindrically symmetric and directed in the êr direction. For a cylin-
drical Gaussian surface, S, a radius r from the charged line terminated by the
two planes z = 0, L, the total enclosed charge equals λL. Since dA

!
along the

top and bottom faces of S is directed in the − êz and êz directions,D
! � dA= 0 along

these surfaces, while D
!
=Dr

!êr! over the side of S, with r
! the cylindrical radius

vector. Hence, Gauss’s law yields, with A = 2πrL,

E
!

r
!� �= 1

ε
D
!

r
!� �= λL

εA
êr!=

λ

2πε0εrr
êr! ð18.2.2Þ

• Infinite charged plane: The field a distance z above or below an infinite charged
sheet along the z = 0 plane with uniform surface charge density σ must be invar-
iant with respect to translations in x and y as well as rotation about any line par-
allel to the z-axis and is consequently directed along sign zð Þêz. For a Gaussian
surface consisting of a box with equal cross-sectional areas Acharge along two
faces perpendicular to z and that further encloses an area Acharge of the charge

sheet, d A
! � E! = 0 along the sides while E

!
and dA

!
are parallel on the top and

bottom faces. As these faces together possess a total area A = 2Acharge

E
!

r
!� �= 1

ε
D
!

r
!� � = sign zð Þ σAcharge

ε 2Acharge
� � êz = sign zð Þ σ

2ε0εr
êz ð18.2.3Þ

In problems, the sheet, line, or point charges above are often replaced by continuous
or multiple-layered planar, cylindrically or spherically symmetric charge distributions.

Examples

1. The field of a point charge together with an infinite line charge is the vector sum
of the fields evaluated earlier, while the magnitude of the field of a positive

charge sheet with charge density σ situated below a similar sheet with charge

density −σ equals σ/ε0εr and zero between and outside the sheets where the

fields of the two layers are parallel and antiparallel, respectively.

2. For a charged infinitely thin spherical/cylindrical shell of radius a, a Gaussian
surface centered on the center of the shell with a radius r < a (in spherical/cylin-
drical coordinates, respectively) encloses zero charge, while a surface with r > a
encloses the charge of the shell. Consequently, the field inside the shell

vanishes, while the field outside coincides with that generated by a point/line

charge at the center of the shell with magnitude equal to the total charge/charge

per unit length of the shell. Electromagnetic shielding additionally employs the

property that electric fields outside a hollow metal cavity of any shape generate
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large currents that conduct charges to its outer surface until the field inside the

metal vanishes. If no charges are present within the cavity, the unique solution

to Maxwell’s equations inside the cavity is then E
!
= 0 uniformly.

3. The electric displacement for an arbitrary planar charge distribution ρ(z)
extending from −L < z < L is obtained in terms of Dz(−L) by applying Gauss’s
law to a box extending from −L to z with equal cross-sectional areas Acharge

along the two faces perpendicular to z:

,

Acharge Dz zð Þ−Dz −Lð Þð Þ =
ðz
−L

ρ z0ð ÞdV 0 =

,

Acharge

ðz
−L
ρ z0ð Þdz0 ð18.2.4Þ

Inside a solid, uniformly charged insulating sphere of radius R with total
charge Q, the charge density equals ρ(r) =Q/V = 3Q/4πR3 so that the radial
component of D is given by

ADr rð Þ= 4πr2Dr rð Þ =
ðr
0
4πr02ρ r0ð Þdr0 = 3Q

4πR3

ðr
0
4πr02dr0 =

Qr3

R3
ð18.2.5Þ

Hence, the electric displacement and electric field increase linearly with radius
within the charge distribution and decay as 1/r2 according to Equation (18.2.1)
outside.

18.3 ELECTRIC POTENTIAL

From r! × E
!
= 0 for static fields, F

!
= qE

!
is a conservative force, and a potential

energy function U can be defined with F
!
= −r!U. Dividing the potential energy of

a test charge by its charge yields the electric potential, V, with units [volt] =

[MD2/QT2] related to the electric field by F
!
= qE

!
= −r!U = −qr! V from which

E
!
= −r!V or, as an integral expression,

V bð Þ−V að Þ= U bð Þ−U að Þ
e

= −
1
e

ðb
a
F
!�d x! = −

ðb
a
E
!�d x! volt½ � ð18.3.1Þ

The energy

1:0eV= 1:6 × 10−19 QV = joules½ � ð18.3.2Þ

gained by an electron by accelerating through a potential of one volt is termed an

electron volt.
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Examples

The potential of an infinite charged sheet along z = 0 with charge density σ in the
absence of any other external charges or charged boundaries is obtained from

V zð Þ=V zð Þ−V 0ð Þ = −

ðz
0
E
!
r!0
� � � dl!0

= −
σ

2ε0εr

ðz
0
dz0

����
����= −

σ zj j
2ε0εr

ð18.3.3Þ

The absolute value sign arises since E
! �d l!is positive for both positive and negative

z. Hence, the potential slopes downward in both directions away from z = 0.
A positive test charge “rolls down” this slope as it experiences a constant force
away from the sheet.

Similarly, for a point charge for which the electric potential is normally set to
zero at infinity,

V ∞ð Þ|fflfflffl{zfflfflffl}
0

−V rð Þ= −

ð∞
r

E
!
r0ð Þ � dr!0 = −

q

4πε

ð∞
r

1

r02
dr

!0 =
q

4πε
1
r0

����
∞

r

= −
q

4πε0εrr

ð18.3.4Þ
As four negative signs are encountered, to verify such a calculation, observe that since
a positive charge q repels a positive test charge, the potential must decrease toward
infinity for the test charge to“rolldown,” i.e., experiencea forceaway, fromtheorigin.

The potential of a line charge instead varies logarithmically with radius and
thus diverges both at r = 0 and r =∞. A reference potential is therefore specified at
a finite distance a in terms of which

V rð Þ−V að Þ = −

ðr
a
E
!
r0ð Þ �dr!0 = −

ðr
a

q

2πε0εrr0
dr0 = −

q

2πε0εr
log

r

a

	 

ð18.3.5Þ

If the source and boundary distributions are not sufficiently symmetric for direct
application of Gauss’s law, the field can still often be written as a superposition of
fields of symmetric charge distributions. Thus, a system containing N discrete point
sources yields an electric field

E
!

r
!� �

=
1

4πε0εr

XN
m = 1

qm

r
!
−r

!
m

�� ��2 êr!−r!m =
1

4πε0εr

XN
m = 1

qm

r
!
−r

!
m

�� ��2
r
!
−r

!
m

r
!
−r

!
m

�� �� ð18.3.6Þ

The vector sum can be avoided by instead adding the potentials of each charge

V r
!� �= 1

4πε0εr

XN
m = 1

qm
r
!
−r

!
m

�� �� ð18.3.7Þ
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and calculating E
!
from E

!
= − r! V . The equivalence of these methods follows from

r! 1

r!−r!0
�� ��

" #
i

= êi
∂

∂xi

X3
n= 1

x−x0n
� �2 !−1

2

= − êi
xi−x0i
� �
r
!
−r

!0�� ��3 = −
1

r
!
−r

!0�� ��2
r!−r!0

r!−r!0
�� ��
" #

i

ð18.3.8Þ

Continuous charge distributions can similarly be divided into infinitesimal elements

with charge dQ = ρd3r, yielding the potential

V r
!� � = 1

4πε0εr

ð
ς

ρ r
!0� �

r
!
−r

!0�� ��d3r0 ð18.3.9Þ

and electric field

E
!

r
!� � = − r! V r

!� �= 1
4πε0εr

ð
ς

ρ r!0
� �

r!−r!0
� �

r
!
−r

!0�� ��3 d3r0 ð18.3.10Þ

Example

By symmetry, the electric field a distance z above the center of a ring of charge of
radius a and charge per unit length λ positioned in the z = 0 plane and centered at

the origin must point in the z-direction so that E
!
= −r!V = − êzdV=dz with

V r
!� � = 1

4πε0εr

ð
ς

λ

r!−r!0
�� ��dl0 = 2πaλ

4πε0εr

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p ð18.3.11Þ

yielding

E
!

r
!� �= − êz

λa

2ε0εr

∂

∂z

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p = êz
λa

2ε0εr

z

z2 + a2ð Þ32
ð18.3.12Þ

If the electric field is instead obtained from Equation (18.3.10), as the vector com-
ponents perpendicular to the z-axis cancel, only the z-component of the field from
each charge segment λdl0 needs to be evaluated.

The following Octave program graphs a potential function along a two-
dimensional plane, illustrating the superposition of the potentials of a separated pos-
itive and negative charge:

clear all
numberOfPoints = 16;
halfWidth = 10;
chargePosition = 2.5;
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xPositionR = linspace( -halfWidth, halfWidth, …
numberOfPoints);

yPositionR = xPositionR;

for outerLoop = 1 : numberOfPoints;
for innerLoop = 1 : numberOfPoints;

potential(outerLoop, innerLoop) = 1. / …
sqrt( ( xPositionR(outerLoop) - chargePosition ) 2̂ …
+ yPositionR(innerLoop) 2̂ ) - 1. / …
sqrt( ( xPositionR(outerLoop) + chargePosition ) 2̂ …
+ yPositionR(innerLoop) 2̂);

end
end

mesh( xPositionR, yPositionR, potential);

18.4 CURRENT AND RESISTIVITY

Resistance results from the conversion of ordered electron motion into random ther-
mal motion by atomic collisions. This is qualitatively similar to a mechanical system
in which a frictional force Ffriction = −cv

!yields a terminal velocity proportional to the
applied force. Hence, current in a resistor is often conceptualized as fluid flowing
through, e.g., a sand-filled pipe. However, unlike, e.g., sliding friction in which dou-
bling the velocity of an object doubles the number of microscopic retarding interac-
tions per unit time, each of which only slightly affects the particle motion, in a resistive
material, the number of collisions is approximately independent of time, but the
momentum change in a single collision is large and effectively randomizes the particle
velocity.

The electric current, I, through a surface, S, equals the total charge Q passing
through S per unit time. In terms of the component of the current density vector

(in reality the current flux) J
!

r
!, t
� �

= eρparticle r
!, t
� �

v
!

r
!, t
� �

, where v
!

r
!, t
� �

is the local

velocity and ρparticle r
!, t
� �

is the particle density (e.g., the number of carriers per unit

volume), in the direction of dS
!

I =
dQenclosed tð Þ

dt
=
ð
S
J
!
r
!, t
� ��dS! ð18.4.1Þ

The current coincides with the direction of positive charge flow; if the current is

instead carried by, e.g., electrons with negative charge, the motion of the physical par-

ticles opposes the current direction.
While according to Newton’s law, the velocity of a free particle in the presence of

an electric field increases linearly with time according v! = a!t = qE
!
t=m, unbound
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charges in most materials exhibit a time-independentmean or drift velocity, v!drift = v!
 �

(where the angled brackets indicates an ensemble average over all charges), that varies
linearly with the electric field. This linear response originates in the far greater thermal
speeds of the charges vthermal≈ v

!�� �� �
, compared to the incremental speed vdrift acquired

from the electric field over the time interval between energetic collisions that scatter
the particles into random directions and thus return their instantaneous average veloc-
ity to zero. As the average distance mean free path, lscatter, between collisions is
approximately velocity independent, the mean scattering time between collisions,

τscatter≈ lscatter/vthermal, varies negligibly with E
!
. The resulting drift velocity

v
!
drift≈qE

!
τscatter=m, acquired by the charge distribution from the electric field over

τscatter, yields a current

J
!

r
!, t
� �

= qρparticle r
!, t
� �

v
!
drift =

q2ρparticle r!, t
� �

τscatter
m

E
!
≡ σ E

! ð18.4.2Þ

in which σ = q2ρparticleτscatter/m is termed the conductivity and its reciprocal, ρresistivity
= 1/σ, the resistivity. Additionally, μ = vdrift=jE

! j is labeled the mobility.
Applying an electric potential ΔV to constant potential metal contacts or terminals

covering the two ends of a resistive bar of length L in the z-direction with a constant

cross-sectional area, A, generates a z-independent current. From J
!
= σ E

!
, the electric

field is then uniform within the resistor so that the potential varies linearly with z
according to Equation (18.4.2) (this can be visualized by subdividing the resistor into
a line of equivalent infinitesimal resistors in parallel with the sum of the identical volt-

age drops over all resistors equal toΔV). From ρ= r! � E!, which only differs from zero
at the two end surfaces, charges accumulate at one terminal and are depleted on the
opposing terminal providing sources for the electric field as in a capacitor. The resist-
ance is computed from ΔV = IR where ΔV, often simply abbreviated V, is termed
the voltage drop over the resistor (here the voltage is larger at the resistor terminal
positioned opposite to the direction of current flow). With

I = J
! � A! = JA = σEA =

σAΔV
L

ð18.4.3Þ

the resistance of the bar is given by

R=
ΔV
I

=
L

σA
=
ρresistivityL

A
ð18.4.4Þ

When two resistors are connected in series, e.g., directly after each other in a circuit

as the current is identical through both resistors, the total voltage drop is given by
Vtotal = V1 + V2 = I(R1 + R2) = IRseries and therefore

Rseries =R1 +R2 ð18.4.5Þ
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On the other hand, if the two resistors are instead connected in parallel, each experi-

ences the same voltage drop so that Itotal = I1 + I2 = V(1/R1 + 1/R2) = V/Rparallel with

1
Rparallel

=
1
R1

+
1
R2

ð18.4.6Þ

The dissipated power in a resistor is obtained by observing that the number of
charges per unit time that flow across the resistor equals I/q, each of which loses
an energy qΔV to heat during transport. The electrical power required to balance this
energy loss thus equals

P=ΔVI ≡VI = I2R=
V2

R
ð18.4.7Þ

The resistance of a resistor of a more general shape for which the functional behav-
ior of the electric field or current distribution can be obtained from symmetry consid-
erations is determined in several alternate ways. These are (1) placing positive and

negative charges on the contacts and evaluating E
!
, over some surface S, which should

be chosen if possible such that Gauss’s law can be applied. (2) The total current I is

obtained by integrating J
!
= σ E

!
over S. (3) The potential drop ΔV over the resistor is

evaluated by integrating the electric field over the region between the two contacts. (4)
R is finally determined from ΔV/I. (10) Assume a current I between the two contacts.

(20) Find J
!
and hence E

!
= J

!
=σ r!
� �

over a surface S between the contacts, typically by

Gauss’s law. (30) Integrate E
! �d l!between the two contacts to obtain ΔV. (100) Assume

a voltage difference ΔV between the two contacts. (200) Find E
!
from E

!
= − r! V . (300)

Find J
!
= σE

!
. (400) Evaluate I =

Ð
J
!�dS!. The last of these procedures coincides most

nearly with the methods appropriate to arbitrary shape electrodes, which form equi-
potential surfaces although the electric field, current, and charge distributions are
typically highly asymmetric.

Example

If a resistive material is situated between two concentric metal spherical shells
with radii r< < r>, a charge Q on the inner sphere and −Q on the outer sphere

yields (1) E
!
=Q=4πε0r2êr! for r< < r < r> from Gauss’s law, (2) I =

Ð
Sσ E

!�dS! =

4πr2 σQ=4πε0r2ð Þ= σQ=ε0 for any Gaussian surface S, (3) ΔV = −
Ð r<
r >

E
!�dr! =

Q r−1< −r−1>
� �

=4πε0, and (4) R=ΔV=I = r−1< −r−1>
� �

=4πσ. Alternatively, (10)

J
!
= I=4πr2êr , (20) E

!
= I=4πr2σêr, and (30) ΔV = −

Ð r<
r >

I= 4πr2σð Þdr = I=4πσð Þ
r−1< −r−1>
� �

or (100) V rð Þ= c1 + c2=r,ΔV = c2 r−1< −r−1>
� �

from Gauss’s law or

Poisson equation, (200) E
!
= c2=r2êr, (300) J

!
= σE

!
= σc2=r2êr , and (400)

I =
Ð
J
!�dS! = 4πσc2.
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18.5 DIPOLES AND POLARIZATION

An electric dipole with dipole moment p
! ≡ qd

!
consists of a positive point charge of

magnitude q displaced by d
!
from a negative charge −q. A uniform electric field exerts

a torque

τ
! =

d

2
qE sinθ

d
!
,E
! + −qEð Þsinθ

−d
!
,E
!

	 

ê
d
!
×E

! = dqE sinθ
d
!
,E
! ê

d
!
×E

! = p
! × E

! ð18.5.1Þ

on a dipole so that the dipole potential energy relative to θ
d
!
,E
! = π=2

U θ
d
!
,E
!

	 

−U

π

2

	 

=
ðθ

d
!
,E!

π=2
τ θ0ð Þdθ0 = −pE cosθ

d
!
,E
! = − p

! � E! ð18.5.2Þ

attains a minimum when the dipole and electric field are aligned. While the forces
on the two charges are oppositely directed and hence cancel in a uniform field, in
a nonuniform field to lowest order, from the definition of the directional derivative,
Equation (8.2.2),

F
!h i

i
= q Ei r

!+
d
!

2

 !
−Ei r

!
−
d
!

2

 ! !
≈ q d

! �r!
	 


E
!h i

i
ð18.5.3Þ

The potential of a dipole for r� d is, where Equation (18.3.8) is applied in the
last step,

V r
!� � = q

4πε0εr
r
!
−
d
!

2

�����
�����
−1

− r
!+

d
!

2

�����
�����
−1

0
@

1
A

=
q

4πε0εr
r2− r

!� d! +
d2

4

� �−
1
2
− r2 + r

!� d! +
d2

4

� �− 1
2

0
@

1
A

=
q

4πε0εrr
1−

êr � d
!

r
+

d2

4r2

 !−
1
2

− 1 +
êr � d

!

r
+

d2

4r2

 !−
1
2

0
B@

1
CA

≈
q

4πε0εrr
1 +

êr � d
!

2r
+…

 !
− 1−

êr � d
!

2r
+…

 ! !

≈
qêr � d

!

4πε0εrr2
=

p
! � r!

4πε0εrr3
= −

1
4πε0εr

p
! � r! 1

r

� �

ð18.5.4Þ

241DIPOLES AND POLARIZATION



For d
!
oriented along z so that p! � êr = qd

! � êr = pcosθ in spherical coordinates,

E
!
= −r!V = −

1
4πε0εr

êr
∂

∂r
+ êθ

1
r

∂

∂θ

� �
pcosθ
r2

=
p

4πε0εrr3
2êr cosθ + êθ sinθð Þ

ð18.5.5Þ

or equivalently (since θ increases downward in polar coordinates, pêz =
pcosθêr − psinθêθ),

Ej = − êj∂jV = −
êj

4πε0εr
∂j
X3
m = 1

pmxm
r3

 !
= −

êj
4πε0εr

X3
m= 1

pm
∂jxm
r3

+ xm∂j
1
r3

� �� �

= −
êj

4πε0εr

X3
m= 1

pm
δjm
r3

−
3
2
xm

2xj
r5

� �� �
=

1
4πε0εr

3 p
!� êr!
� �

êr!− p
!

r3

 !
j

ð18.5.6Þ

The polarization, P
!
, is defined as the net dipole moment per unit volume such that

for n molecules per unit volume with individual dipole moments p!

P
!
= n p! ð18.5.7Þ

A spatially varying polarization results in an induced polarization or bound charge.
That is, a sheet ofN(x0) dipoles with cross-sectional area A and moments p! = edêx cen-
tered along the plane at x = x0 together with a second sheet N(x0 + d) centered at x0 + d
generates a net charge + qN(x0) − qN(x0 + d) along the plane at x0 + d/2 from the pos-
itive charges of the dipoles at x and the negative charges of the dipoles at x + d. Since
the two layers together occupy a volume ς = Ad between x0 and x0 + d, the effective
charge density inside the region from x0 to x0 + d equals

ρinduced =
q N x0ð Þ−N x0 + dð Þð Þ

ς
� d
d
=
P x0ð Þ−P x0 + dð Þ

d
≈ −

∂P x0ð Þ
∂x0

ð18.5.8Þ

Generalizing to three dimensions, the macroscopic electric field, which is related to
the force on a test particle and therefore is affected by the local charge density (each
dipole is electrically neutral and therefore does not provide a source for the electric
displacement except at microscopic scales of the order or smaller than the dipole
charge separation), satisfies

r! � E! =
ρtotal
ε0

=
ρfree + ρinduced

ε0
=
1
ε0

ρfree− r! � P!
	 


ð18.5.9Þ

From r! � D! = ρfree,

D
!
= ε0 E

!
+ P

!
= εE

! ð18.5.10Þ
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In terms of the dielectric susceptibility χ defined by

P
!
= ε0χ E

! ð18.5.11Þ

the dielectric permittivity adopts the form

ε = ε0 1 + χð Þ ð18.5.12Þ

In a crystal, the electronic restoring force can be anisotropic (direction dependent) in

which case P
!
and E

!
are generally not collinear and χ and ε constitute tensor (e.g.,

matrix) quantities.
Since

r! � E! =r! �D
!

ε
=
1
ε
r! � D! + D

! � r! 1
ε

� �
=
ρfree
ε

− E
! � r! lnε ð18.5.13Þ

while r! × D
!
is given by

r! × D
!
= r! × P

!
= εr! × E

!

|fflfflffl{zfflfflffl}
0

− E
!
× r! ε= a−

D
!

ε
× r! ε= −D

!
× r! lnε ð18.5.14Þ

even if ρfree = r! � D! = 0, except in a homogeneous medium or a medium with suffi-

cient symmetry that r! × P
!
= 0 throughout space, D

!
= εE

!6¼ 0.

Examples

1. An electret possesses a permanent polarization vector even in the absence of

external fields. For a cylindrical electret, with a uniform polarization P
!
=Pzêz

along its symmetry axis, r! ×D= r! × P
!
= − êθ ∂Pz=∂rð Þ, which differs from

zero along the side of the cylinder. Hence, r! × P
!
generates the same D

!
field

as theH
!
field resulting from a uniform axial surface current (see Section18.11).

Thus, while
Þ
C E

!�d r! = 0 around all closed paths C, typically
Þ
C�S D

!�d r! =Ð
S P

!�d S!6¼ 0 if C encloses part of the cylinder’s side.

2. For an infinite planar dipole layer with surface area A!∞ and surface charge
density−σ separated by a distanceΔz from a similar layer with surface density σ,

P
!
= êzQtotalΔz=AΔz= êzσAΔz=AΔz= σêz, while the potential increase over the

distanceΔz equalsΔV = σΔz/ε0. If a second pair of layers is located immediately
above this layer, ΔV over the two layers equals 2σΔz/ε0. By extension, over an
infinite planar electret withP

!
= σêz of height Lwith ρfree = 0,ΔV = −LEz = σL/ε0

so that D
!
= εE

!
+ P

!
= 0 as expected since here both r! × D

!
= r! × P

!
= 0 by

symmetry and r! � D! = 0.
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18.6 BOUNDARY CONDITIONS AND GREEN’S FUNCTIONS

In finite spatial regions, the electric field is determined not only by the enclosed source
distribution but also by fields or charges at the boundary. These boundary contribu-
tions can be determined through the method of Green’s functions.

First, consider an electric field parallel to the surface of a conductor or dielectric
(insulator) that occupies the region z < zs. Specifying the coordinate axis such that the

E
!
=Ekêy while the êz direction is aligned with the surface vector ên, for every point

infinitesimally above the surface x!s, i.e., x
!
s = x

!
surface + εêz where x

!
surface is a point on the

surface and ε�Δz, from Faraday’s law, Equation (18.1.12),

Δz r! × E
!	 


x
=Δz

∂Ez

∂y|{z}
0

−
∂Ey

z}|{Ek

∂z

0
BBB@

1
CCCA≈ − Ek x

!
s

� �
−Ek x

!
s−Δzêz

� �Þ= −Δz
∂Bx

∂t

�

ð18.6.1Þ
which equals zero as Δz! 0 since B

!
and its time derivatives are finite. Hence, the

parallel component of the electric field is continuous at a dielectric interface, while

as E
!
inside a conductor is zero (otherwise infinite currents would result), Ek vanishes

just outside a conductor. Next, Gauss’s law, Equation (18.1.1), instead yields with z,

the perpendicular (⊥) direction, and E
!
=E⊥êz

Δzr! � D! =Δz
∂εE⊥ x!s

� �
∂z

≈ε x
!
s

� �
E⊥ x

!
s

� �
−ε x

!
s−Δzêz

� �
E⊥ x

!
s−Δzêz

� �
=Δzρfree = σsurface

ð18.6.2Þ
for a surface charge density σsurface = ρfree/Δz distributed within a distance Δz below
the surface. Hence, E⊥ (andD⊥ for a free surface charge distribution) is discontinuous
across the boundary in the presence of surface charges or a refractive index discon-
tinuity; however, its integral, the electric potential, remains continuous over the
boundary. Analogously, the magnetic induction satisfies the boundary conditions

B⊥ x!s
� �

−B⊥ x!s−Δzêz
� �

= 0 ð18.6.3Þ

while the magnetic field H
!
obeys, where K

!
is the surface current density,

Δz r! × H
!	 


x
= −Δz

∂Hy x
!
s

� �
∂z

≈ − Hy x
!
s

� �
−Hy x

!
s−Δzêz

� �� �
=ΔzJx +Δz

∂Dx

∂t
≈Kx

ð18.6.4Þ
To determine the electric potential within a bounded volume, ς, Green’s theorem,

Equation (8.4.5), can be employed with ϕ1 r
!� � =V rð Þ and ϕ2 r

!� �=G r
!, r!0
� �

where the

Green’s function G r
!, r!0
� �

here satisfies
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r2
r!0G r

!, r!0
� �

= −4πδ r
!
−r

!0� � ð18.6.5Þ

From r! � D! = ρfree and E = − r! V , in a medium of constant permittivity V r
!� � further

obeys Poisson equation

r2V r
!� �= −

ρfree r
!� �

ε0εr
ð18.6.6Þ

Accordingly, with dA
! � r! = dAên � r

!
= dA∂=∂n, where n (or n0 below) is the outward

normal from ς, after replacing the integral over V r!0
� �

δ r!−r!0
� �

by V r!
� �

,

V r
!� � = 1

4πε0εr

ð
ς
G r

!, r!0
� �

ρfree r
!0� �

d3r0

+
1
4π

þ
S�ς

G r!, r!0
� �∂V r

!0� �
∂n0

−V r!0
� �∂G r

!, r!0
� �
∂n0

 !
dA0

ð18.6.7Þ

Equation (18.6.7) expresses the potential inside a region as the sum of the inhomo-
geneous solution of Poisson equation associated with the charges within ς and a
homogeneous surface integral term, which incorporates the boundary conditions
through appropriate source terms on S. That is, the (unprimed) Laplacian operator act-
ing on the Green’s functions in the latter term yields zero except on S where r

! = r!0.

The first term in the surface integral arises from a normal E
!
field component corre-

sponding to a surface charge layer, while the second term is generated by a dipole
layer that discontinuously changes the potential at the boundary. Such a layer contri-
butes to the potential within ς through the difference of the Green’s functions of its
positive and negative sheets that in the limit of zero separation transforms into the
normal derivative of the Green’s function.

The Poisson equation possesses unique solutions since if V1 and V2 are solutions
with the same sources and boundary conditions, V1 − V2 satisfies the homogeneous
Poisson equation with no sources and zero boundary conditions at the surface and there-
fore vanishes throughout the problem region. For Dirichlet boundary conditions, the

potential is specified on the boundary, while the condition G r
!, r!0
� �

= 0 is imposed at

all boundary points r!0. ForNeumann boundary conditions, the derivative of the poten-
tial is instead specified on S, and G r

!, r!0
� �

is constructed with ∂G r!, r!0
� �

=∂n0 = c on S,
where the value c = −4π/A is determined from

ð
ς
r2G r!, r!0

� �
d3r0 = −4π

ð
ς
δ r!−r!0
� �

d3r0 = −4π

=
ð
ς
r! � r! G r

!, r!0
� �h i

d3r0

=
ð
S
dS

!� r! G r
!, r!0
� �h i

=
ð
S

∂G r
!, r!0
� �
∂n

dS0 = cA

ð18.6.8Þ
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leading to

V r
!� � = 1

4πε0εr

ð
ς
G r

!, r!0
� �

ρfree r
!0� �

d3r0

+
1
4π

þ
S�ς

G r
!, r!0
� �∂V r

!0� �
∂n0

dA0 +
1
A

þ
S�ς

V r
!0� �

dA0
ð18.6.9Þ

The last term averages the potential over S but does not affect the electric field.
Finally, mixed boundary conditions specify the potential and its normal derivative
on nonoverlapping regions.

The method of images solves a potential problem on a bounded domain D by pla-
cing additional sources into a larger domain containing D such that the resulting
potential function reproduces the boundary conditions initially specified on the perim-
eter ofD. By uniqueness, the solution to the extended problem then coincides with the
desired solution within D.

Example

The potential of a point charge at (a, 0, 0) in the half-space D to the right of a
grounded semi-infinite metal plane along at x = 0 can be obtained by extending
D to all space while introducing a fictitious negative point charge at (−a, 0, 0),
yielding

V r
!� � = q

4πε0εr

1

r
!
−aêx

�� �� − 1

r
!+ aêx
�� ��

 !
ð18.6.10Þ

which satisfies the required zero boundary conditions along x = 0 and therefore
constitutes the desired unique solution to the problem in D. The charge along
the conducting plane at x = 0 and axial distance rk from the origin is then obtained
from Equation (18.6.2):

σ

ε0εr
=E +

⊥ = −
∂V

∂x

����
x = 0

= −
q

4πε0εr

∂

∂x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2k + x−að Þ2

q −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2k + x+ að Þ2
q

0
B@

1
CA
�������
x = 0

= −
2qa

4πε0εr

1

r2k + a
2

	 
3=2

ð18.6.11Þ

The force on the charge at x = a equals that between the charge and its image
charge:

F
!
= −

q2

4πε0εr

1
4a2

êx ð18.6.12Þ
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From this expression, the work performed in moving a charge from x = a to infinity
equals

W = −

ð∞
a

F
!�dl!= q2

4πε0εr

ð∞
a

1
4x2

dx=
q2

16πε0εr
−
1
x

� �����
∞

a

=
q2

16πε0εa
ð18.6.13Þ

which is half of the potential energy of two charges separated by 2a, since displa-
cing the source charge displaces the image charge, but the latter motion is not asso-
ciated with physical work.

Problems often analyzed with image charges include a charge inside a conducting
rectangular box, between two parallel conducting planes, or within a wedge with an
opening angle π/n for integer n > 1. The wedge requires 2n − 1 image charges, while
the other configurations generate infinitely many image charges. The sign of each
charge is reversed with respect to its closest neighbors and occupies the position that
would be observed visually if the conducting planes are replaced by mirrors. Image
charges associated with dielectric boundaries are smaller than the physical charge
since only a fraction of the source field penetrates into the dielectric region. Image
charges can also be employed for cylindrical and spherical boundaries.

Example

For a charge q inside and at a distance a from the center of a conducting sphere of
radius R, the magnitude q0 of the image charge and its distance, d, from the center
of the sphere are obtained by setting V on the sphere at the two points on the line
joining the charges to zero:

q

R−a
= −

q0

d−R
q

R+ a
= −

q0

d +R

ð18.6.14Þ

Dividing the two equations and cross multiplying,

R−að Þ R+ dð Þ= d−Rð Þ R+ að Þ

R2 +
,

d−að ÞR−ad = −R2 +
,

d−að ÞR + ad
ð18.6.15Þ

Hence, d = R2/a, and from Equation (18.6.14), q0 = −qR/a. When a! R, d! R as
well. The spherical curvature can then be neglected and q0 ! −q as for a flat con-
ducting surface.

If the symmetries of the problem coincide with the coordinate directions, the poten-
tial can be obtained through separation of variables as discussed in Chapter 13.
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Example

An axially symmetric V can be written as V r,θð Þ=P∞
l= 0 clr l +
�

dlr− l+ 1ð ÞÞPl cosθð Þ
according to Equation (13.2.5). If a grounded conducting sphere of radius R is

placed in a linear electric field E
!
=E0êz for r� R, V r!

� �
= −E0z= −E0rcosθ

and hence cl = −E0δl1; all other cl = 0 to preclude unphysical divergences at infinite
radius. The r− (l + 1) terms, however, can be nonzero as these approach zero for
r!∞. From the orthogonality of the Legendre polynomials, V(R) = 0 implies
dl = E0R

3δi1 so that V(r, θ) = E0(−r + R3/r2)cos θ and from Equation (18.6.2)

σ R,θð Þ = −ε0εr
∂V

∂r

����
r =R

= 3ε0εrE0 cosθ ð18.6.16Þ

18.7 MULTIPOLE EXPANSION

The potential far from a localized charge distribution can be recast as a sum of terms
decaying as different powers of the distance from the source through the multipole
expansion. Decomposing 1= r

!
−r

!0�� �� into spherical harmonics, for r > r 0 according to
Equation (13.3.39),

V r
!� �= 1

4πε0εr

ð
ρ r

!0� �
r
!
−r

!0�� ��d3r0

=
1

4πε0εr

X∞
l= 0

Xl
m= − l

4π
2l+ 1

ð
ρ r

!0� �
r0lYlm θ0,ϕ0ð Þd3r0

� �
Ylm θ,ϕð Þ
rl+ 1

ð18.7.1Þ

The electric monopole and electric dipole terms are then (recall that Yl−m = −1ð ÞmY∗
lm)

4πε0εrV r
!� � = 1

r

ð
ρ r

!0� �
d3r0 +

1
r2

ð
ρ r

!0� �
r0 cosθ0d3r0

� �
cosθ +

Re
ð
ρ r

!0� �
r0 sinθ0e− iϕ

0
d3r0

� �
sinθeiϕ

� �

8>>><
>>>:

9>>>=
>>>;

+…

=
1
r

ð
ρ r

!0� �
d3r0 +

1
r3

ð
ρ r

!0� �
z0d3r0

� �
z+

Re
ð
ρ r

!0� �
x0− iy0ð Þd3r0

� �
x + iyð Þ

� �

8>>><
>>>:

9>>>=
>>>;

+…

=
1
r

ð
ρ r

!0� �
d3r0 +

1
r3
X3
i= 1

ð
ρ r

!0� �
x0id

3r0
� �

xi +… ð18.7.2Þ
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Including the l = 2 quadrupole term, generated by terms such as Y22/ sin2θe2iϕ/
x2/r2, yields

V r!
� �

=
1

4πε0εr

q

r
+
p
! � x!
r3

+
1
2r5
X3
i, j= 1

Qijxixj +…

 !
ð18.7.3Þ

with (note from the length dimensions of these expressions that for each term of V(r) to
possess the same units requires the dependence on r given above)

q=
ð
ρ r0ð ÞdV 0

pi =
ð
x0iρ r0ð ÞdV 0

Qij =
ð

3x0ix
0
j−r

02δij
	 


ρ r0ð ÞdV 0

ð18.7.4Þ

18.8 RELATIVISTIC FORMULATION OF ELECTROMAGNETISM,
GAUGE TRANSFORMATIONS, AND MAGNETIC FIELDS

That the Lorentz force law is preserved in all inertial frames implies that the magnetic
and electric fields are interrelated much as space and time. However, while space and
time form a four-dimensional vector, the six components of the electric and magnetic
fields together form a single antisymmetric 4 × 4 electromagnetic field tensor.

To illustrate the physical nature of this relationship, for a line of positive charges
with charge density λ moving in the laboratory (rest) frame F(rest) with a velocity
v
! = vêz relative to a collinear, oppositely charged stationary background distribution

− λ, the total charge density ρ(rest) = 0 so that E
!

restð Þ = 0 while B
!

restð Þ = μ0λv=2πrêθ
implying zero force on a stationary charge q. However, in a frame F(v) moving with
velocity v! = vêz, the length of a segment of the positive charge distribution is expanded

by γ > = 1−β2<
� �−1=2

with β< = v/c and λ is therefore reduced by a factor 1/γ> while the
opposite occurs for the negative charge background, yielding a net linear charge
density

λ vð Þ = λ + −λ− =
λ

γ >
−γ > λ=

λ

γ >
1−γ2>
� �

=
λ

γ >
1−

1

1−β2<

� �
= −λγ > β

2
< ð18.8.1Þ

and therefore an electric field (where c2 = 1/μ0ε0)

E
! vð Þ

= −
λγ > v

2

2πε0rc2
êr = −

λμ0γ > v
2

2πr
êr ð18.8.2Þ

249RELATIVISTIC FORMULATION



that accelerates a positive test charge q > 0 toward the wire, seemingly contradicting
the independence of physical laws on the inertial frame. However, in F(v), the Lorentz-
contracted negative background charge distribution moves with a velocity −vêz and

therefore generates a current λγ > v
!. Consequently, B

! vð Þ
= γ >B

! restð Þ
and the magnetic

force on q cancels the electric force as (c2 = 1/μ0ε0)

F
! magnetic,vð Þ

= qv×B
! vð Þ

= −
qμ0λγ > v

2

2πr
êz × êθ|fflffl{zfflffl}

− êr

= −F
! electric,vð Þ ð18.8.3Þ

Equation (18.8.1) further indicates that cρ forms the zero component of a relativistic

contravariant four-vector Jμ ≡ cρ, J
!	 
T

C
for which in this instance, since ρ(rest) = 0,

cρ vð Þ = γ > cρ restð Þ−β < J
restð Þ
z

	 

= −γ > β < J

restð Þ
z = −γ > β < λv ð18.8.4Þ

Indeed, in relativistic notation, the charge continuity equation, Equation (18.1.27), can
be rewritten as

DμJ
μ ≡

∂J μ

∂xμ
= 0 ð18.8.5Þ

with Dμ = ∂=∂xμ = ∂=∂ct,r!r
!

	 

R
the covariant four-vector of Equation (17.3.2).

For static fields, Laplace equation for the scalar electric potential in vacuum in the
presence of sources can be written as

r2V = −
ρ

ε0
= −c2μ0ρ = −cμ0J

0 ð18.8.6Þ

while for time-invariant sources in vacuum,r! � B! = μ0 r
! � H! = 0, implying that B

!
can

be written in terms of a three-component vector “magnetic” potential A
!
as

B
!
= r! × A

! ð18.8.7Þ

However, the physical field B
!
is then unchanged under the transformation A

!
+

r! Λ r
!, t
� �

=A
!0 (since r! × r! f = 0 for any f), where Λ r

!, t
� �

is an arbitrary scalar field.

If Λ is chosen as the solution of r2Λ= − r! � A! (termed the Coulomb gauge), then

r! �A!0 = 0 and, after redesignating A
!0 as A, the Maxwell’s equation r! × H

!
= μ0 J

!

yields

r! × r! × A
!	 


= r! r! � A!
	 

|fflfflfflffl{zfflfflfflffl}

0

−r!2 A
!
= μ0 J

! ð18.8.8Þ
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The above formula then comprises three independent equations for each of the three

components of A
!
, each of the form of the Poisson equation, Equation (18.8.14), for the

scalar potential with solutions

A
!

r
!, t
� �

=
μ0
4π

ð
ς

J
!
r
!0, t
� �
r!−r

!0�� �� d3r0 ð18.8.9Þ

Accordingly, by introducing a four-vector Aμ =
�
V=c, A

! �T
C, Laplace equation for both

the scalar and vector potentials is obtained from the static (time-invariant) specializa-
tion of the covariant wave equation

1
c2

∂2

∂t2
−
∂2

∂x2
−
∂2

∂y2
−
∂2

∂z2

 !
Aμ = ∂μ∂

μAν ≡ □Aν = μ0J
ν ð18.8.10Þ

where □ constitutes the relativistically invariant (scalar) four-dimensional Laplacian
or wave operator.

In time-varying systems, the relationship between the potentials and the source

distribution depends on the choice of gauge function. As r! × K
!
= 0 implies that

K
!
= r! Φ r

!� � for some scalar function Φ r
!� �, from r! × E

!
+ ∂B

!
=∂t = r! × E

!
+

∂ r! × A
!	 


=∂t = 0, an electric potential can be defined by

E
!
+
∂A

!

∂t
= − r! V ð18.8.11Þ

Subsequently, r! × H
!
−∂D

!
=∂t = J

!
in free space yields

μ0 J
!
= r! × r! × A

!	 

−μ0ε0

∂

∂t
− r! V −

∂ A
!

∂t

 !

= r! r! � A!
	 


−r2 A
!
+
1
c2

∂2 A
!

∂t2
+
1
c2

∂

∂t
r! V

=□A
!
+ r! r! � A!+ 1

c2
∂V

∂t

� �
ð18.8.12Þ

While Equation (18.8.12) differs from Equation (18.8.10) for time-dependent
sources, the gauge transformation

V 0 =V −
∂Λ r

!, t
� �
∂t

, A0! = A
!
+ r! Λ r!, t

� � ð18.8.13Þ
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preserves Equations (18.8.11) and (18.8.7) therefore leaves Maxwell’s equations

invariant. In the Coulomb gauge, r! �A0! = 0 and therefore

r! �E0! = −r2V 0 =
ρ

ε
ð18.8.14Þ

The electric potential, where the primes are omitted, then coincides with the static
expression

V r, tð Þ = 1
4πε

ð
ς

ρ r
!0, t
� �
r
!
−r

!0�� �� d3r0 ð18.8.15Þ

which adjusts instantaneously to changes in the charge distribution. However, the

observable quantity, namely, the electric field, also depends on −∂A
!
=∂t with A

!

obtained from Equation (18.8.12). With this term included, the effect on E
!
of a change

in the source distribution propagates outward as expected at the speed of light.
Finally, the relativistically invariant Lorentz gauge is defined by1

∂μA
0μ =

1
c2
∂V 0

∂t
+ r! �A0! = 0 ð18.8.16Þ

In terms of the contravariant 4-vectors Aμ and Dμ = gμν∂=∂xν = ∂=∂xμ =�
∂=∂ ctð Þ, −r!r

!
�T
C, the source-free Maxwell’s equations, Equations (18.8.7) and

(18.8.11), are implicit in the definitions of the scalar and vector potentials,
Equations (18.8.7) and (18.8.11). In particular, since the antisymmetric component
of the outer product generates a cross product according to Equation (5.5.7),

B
!
= r! × A

!
can be obtained from the spatial part of the antisymmetrized tensor product

of r! and A
!
. By associating the gradient operator with the contravariant derivative,

DA,C, where the subscript indicates that the resulting expressions must be algebra-
ically rearranged to act on A, the resulting contravariant tensor additionally contains
the electric field within its temporal components (sign conventions differ among
authors):

, ,A A

0

T T
A C A C

TT
ctct ct

i j ct j iC C C C

T

ijk k
C C

D D D A A D

V c V cV c A

V c A A A

E c

E c B

F

ð18:8:17Þ

1 Ifr! �A 6¼ 0 orr! � A! + 1=c2ð Þ∂V=∂t 6¼ 0 for potentials A, V, the gauge transformation, Equation (18.8.13),

yields potentials A
!0 and V0 that satisfy the Coulomb or Lorenz condition if Λ is identified with the solutions

of r2Λ= − r! � A! or □Λ= r! � A! + 1=c2ð Þ∂V=∂t, respectively.
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A tensor Tμν = AμBν is transformed into a moving frame according to T0μν =
LμαL

ν
βA

αBβ. The A (row) components of T are thus transformed by multiplying by
the Lorentz transformation matrix on the left, while the B (column) components of
A� BT are transformed by multiplying by the transpose of the Lorentz matrix on
the right as can be seen by writing out individual components of the product. Hence,
transforming to a moving frame in the x-direction,

v rest rest

0 0

0 0

0 0 1 0

0 0 0 1

Tlm l m ns l ns m
n s n s

C R

L L L LF F F

C

0

0

0

0

x y z

x z y

y z x

z y x C

E c E c E c

E c B B

E c B B

E c B B
R

0 0

0 0

0 0 1 0

0 0 0 1
C

ð18:8:18Þ

Since the product of three antisymmetric matrices is antisymmetric, this product can
be computed from the results of three block matrix products:

1
c

γ −βγ

−βγ γ

 !
0 −Ex

Ex 0

 !
γ −βγ

−βγ γ

 !
=
1
c

γ −βγ

−βγ γ

 !
βγEx −γEx

γEx −βγEx

 !

=
1
c

0 −γ2 + β2γ2
� �

Ex

γ2−β2γ2
� �

Ex 0

0
@

1
A=

0 −Ex=c

Ex=c 0

 !

1 0

0 1

 !
0 −Bx

Bx 0

 !
1 0

0 1

 !
=

0 −Bx

Bx 0

 !

γ −βγ

−βγ γ

 !
−Ey=c −Ez=c

−Bz By

 !
1 0

0 1

 !
=

−γ Ey=c−βBz

� �
−γ Ez=c + βBy

� �
γ βEy=c−Bz

� �
γ βEz=c+By

� �
 !

ð18.8.19Þ

yielding generally, where k denotes the x-direction and ⊥ the two perpendicular
directions,

E vð Þ
k =E 0ð Þ

k

B vð Þ
k =B 0ð Þ

k

E
! vð Þ
⊥ = γ E

! 0ð Þ
⊥ + v

! × B
! 0ð Þ
⊥

� �

B
! vð Þ
⊥ = γ B

! 0ð Þ
⊥ −

v
!

c2
× E

! 0ð Þ
⊥

� �
ð18.8.20Þ
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Equivalently, for v! = vxêx, starting from E
!

vð Þ = −r! vð ÞV vð Þ−∂ vð Þ
ct cA

!
vð Þ

	 

and B

!
vð Þ =

r! vð Þ ×A
!

vð Þ and noting that Aμ and ∂ct, − r!
	 
T

C
are contravariant 4-vectors, so that,

e.g., ∂ vð Þ
ct = γ ∂ct − v=cð Þ −∂xð Þð Þ,

Ey
vð Þ = −∂y γ V − v=cð ÞcAxð Þð Þ− γ ∂ct + v=cð Þ∂xð Þð ÞcAy

= −γ ∂ct cAy

� �
+ ∂yV

� �
−v ∂xAy−∂yAx

� �

= γ Ey−vBz

� �
ð18.8.21Þ

The increased value of E
!
⊥=E

!
k in moving frames enhances the radiative coupling of the

fields of high-energy particles to transverse electromagnetic waves.
Returning to the remainingMaxwell’s source equations, since F00 = 0, Gauss’s law

and Ampere’s law in free space can be written as, where − ∂iεijkBk = εjik∂iBk,

ct R

D
x

F F
C

0

2

1
0

J
1

T

ijk k
C

C

EE c c
E c B E

B
c t

ð18:8:22Þ

In terms of Aμ, after changing the order of the mixed partial derivatives, in the Lor-
entz gauge

∂

∂xμ

∂Aν

∂xμ
−

∂

∂xν

∂Aμ

∂xμ|{z}
0

= μ0J
ν ð18.8.23Þ

Equation (18.8.23) becomes simply, as expected in the Lorentz gauge, Equation (18.8.16),
as expected

□Aν = μ0J
ν ð18.8.24Þ

Since the two source-free Maxwell’s equations can be obtained from the remaining
Maxwell’s equations containing source terms through the transformation B! − E/c,
E/c! B, J, ρ = 0, the former equations are given by

DμG
μν =

∂

∂xμ
Gμν = 0 ð18.8.25Þ

where since
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1 0

0 1
R R

g gF F

C

0

ijk k
C

E c

E c B
R

1 0

0 1
R

ijk k
R R

E c

E c B

ð18:8:26Þ

the dual tensor

0

0 01
02

0

x y z

x z yv

y z x ijk k
C C

z y xC C

B B B

B E c E c B

B E c E c B E c

B E c E c

G F

ð18:8:27Þ
Here, e.g.,ε0123 = ε1230 = 1 so thatG01 = 1/2(F23 − F32) = −Bx,whileG

12 = 1/2(F30 −F03)

=Ez. With the definitions dτ = dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−dx2= cdtð Þ2

q
= dt=γ, pμ = E=c, p!

� �T
=mγ c, v!

� �T
,

and pμ =mγ c, − v
!� �
, the Maxwell force law can be recast in relativistic form as

dpν

dτ
=
q

m
Fνμpμ ð18.8.28Þ

Finally, the relativistic action of a particle, Equation (17.6.5), is generalized by
observing that in the presence of an electric field, the action L = T −U = T − qV. Writ-
ing this as a Lorentz invariant quantity leads to

S =
ðxμ t2ð Þ

xμ t1ð Þ
−mcds−qAμdx

μ
� �

=
ðxμ t2ð Þ

xμ t1ð Þ
−mcds−qVdt + qA

!�d r!
	 


=
ðt2
t1

−mc2

ffiffiffiffiffiffiffiffiffiffiffi
1−

v2

c2

s
−qV + qA

!� v!
0
@

1
Adt =

ðt2
t1

Ldt

ð18.8.29Þ

Hence, the generalized momentum is given by

P
!
=r!v

!L=
m v

!

ffiffiffiffiffiffiffiffiffiffiffi
1−

v2

c2

r + qA
!
= p

! + qA
! ð18.8.30Þ
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while the Hamiltonian is obtained according to

~H = v
! � P! −L=

mv2ffiffiffiffiffiffiffiffiffiffiffi
1−

v2

c2

r + qA
! � v! +mc2

ffiffiffiffiffiffiffiffiffiffiffi
1−

v2

c2

r
−qA

! � v! + qV =
mc2ffiffiffiffiffiffiffiffiffiffiffi
1−

v2

c2

r + qV

ð18.8.31Þ
In the nonrelativistic approximation, Equation (18.8.31) becomes, with the energy
computed relative to mc2,

~H =
1
2m

P
!
−qA

!	 
2
+ qV ð18.8.32Þ

To derive theMaxwell force equation fromEquation (18.8.32) requires the Hamiltonian

equations. Note that v! includes contributions from both P
!
and A

!

dr
!

dt
= v

!=r!
P
! ~H =

1
m

P
!
−q A

!	 


dP
!

dt
= −rr

!
!

~H = qrr
!

!
v
!�A!
	 


−qrr
!

!
V

ð18.8.33Þ

Combining these with the identities dN
!
=dt = ∂N

!
=∂t + v

! � r!N! and since rr
!

!
is taken

for constant P
!
and hence v!, v! × r!r

!, A × A
!	 


=r!r
!, A v

!� A!
	 


− v
!�r!r

!, A

	 

A
!
,

m
d2 r!

dt2
=
dP

!

dt
−q

∂A
!

∂t
+ v

!�r!r
!

	 

A
!

 !
= −q r!r

!V +
∂A

!

∂t

 !

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
qE

!

+ qrr
!

!
v!� A!
	 


−q v
!�rr

!
!	 


A
!

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q v

!
× r!×A

!ð Þð Þ= qv
!
×B

!

ð18.8.34Þ

18.9 MAGNETOSTATICS

The magnetic field generated by a time-independent current distribution is derived by

applying B
!
= r! × A

!
to Equation (18.8.9). Because r! acts on r

! but not r!0,

B
!
=
μ0
4π

r! ×
ð
ς

J
!
free r0ð Þ
r
!
−r

!0j j d
3r0

=
μ0
4π

ð
ς
rr

!
! 1

r!−r!0
�� ��

 !
× J

!
free r0ð Þd3r0

=
μ0
4π

ð
ς

J
!
free r0ð Þ × r

!
−r

!0� �
r
!
−r

!0�� ��3 d3r0

ð18.9.1Þ
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For a wire with cross-sectional area A, from Equation (18.1.6), J
!
dV = JAdl

!
= Idl

!
,

where d l
!
points in the direction of the current, yielding the Biot–Savart law:

B
!
=
μ0
4π

ð
l
dB

!
=
μ0
4π

ð
l

Idl
!
× r

!
−r

!0� �
r!−r

!0�� ��3 ð18.9.2Þ

The right-hand rule can be applied here in two ways. If the thumb of the right hand

points along a current element, its contribution to B
!
wraps around in the direction of

the fingers of the right hand. For a current loop, if the fingers of the right hand wrap
around the loop in the direction of the current, the thumb points in the direction of the
contribution to the magnetic field by the loop.

Example

At a position r! = 0,0,zð Þ above a wire ring positioned along r 0 = R, z0 = 0 and carry-

ing a counterclockwise current as seen from z > 0, d l
!
and r!−r!0 are perpendicular

while only Bz 6¼ 0 by symmetry. Further, dBz = dBsinθz,r!−r!0 = dBR= r
!
−r

!0�� ��
from which

B
!
= êz

μ0
4π

ð
l

I sinθdl
z2 +R2

= êz
μ0
2

RI

z2 +R2

Rffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 +R2

p ð18.9.3Þ

In typical problems, the Biot–Savart law is employed to calculate B
!
for, e.g., cur-

rent carrying squares or other symmetric geometric figures. The integral over dl
!
can

then generally be deduced from that for a single section of the figure. However, for

certain symmetric current distributions, B
!
can be obtained from the integral form of

Ampere’s law.
1.Wire: The magnetic field of an infinite wire positioned along r = 0 in cylindrical

coordinates cannot contain a radial component as reversing the current direction and
then reflecting through a z = const plane of symmetry would invert the component

while Hz = 0 since d l
!
= dlêz in Equation (18.9.2). Consequently, H

!
is directed in

the azimuthal direction according to the right-hand rule explained earlier and

þ
C
H
! �d l!= 2πrHϕ = I ð18.9.4Þ

2. Plane (current sheet): The magnetic field of a uniform current sheet with current

per unit length K
!
and surface normal n̂ is parallel to the sheet since a perpendicular

component would change sign if the direction of current flow is reversed. Rotating the
sheet 180� about n̂ would then reproduce the initial current distribution but with the

negative of the perpendicular field. Integrating H
! � dl!over a rectangular “Amperian”
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loop with two sides perpendicular to the surface over which H
! � dl!= 0 and two

oppositely directed parallel segments equidistant from and on opposite sides of the
surface yields

þ
C
H
! �dl!= 0 +HL + 0+ −Hð Þ −Lð Þ= 2HL =KJL ð18.9.5Þ

The direction ê
K
! × n̂ of the magnetic field is again obtained by placing one’s thumb

along K
!
; the direction of the fingers coincides with that of H

!
both above and below

the current sheet.
3. Cylinder: Outside a cylindrical coil of radius R, extending from z = −∞ to z =

+∞ formed from a wire with counterclockwise current I as seen looking towards the
direction of smaller z and n turns per unit length (or equivalently a cylindrical current
sheet with a surface current density K = nI)Hr = 0 as for a wire. A rectangular Amper-
ian loop with two sides along z of length L, one situated at r < R and the second at

r =∞, encloses a current nIL. As H
! � d l!6¼ 0 only for the side with r < R,

H
!
= nIêz ð18.9.6Þ

4. Toroid: A circular Amperian loop of radius rwithin a toroidal (donut-shaped) coil
encloses a current equal to NI, where N represents the total number of turns, so that

2πr H
!
=NIêϕ ð18.9.7Þ

Magnetic fields cannot perform work as the power supplied by the magnetic force
equals

P=
dW

dt
=FB � v! = q v ×Bð Þ � v! = 0 ð18.9.8Þ

Example

A point charge moving with velocity v
! in the x–y plane in the presence of a mag-

netic field Bêz describes a circular orbit obtained by equating the centrifugal force
to the magnetic force:

qvB =
mv2

r
ð18.9.9Þ

Since the force is radially directed, no work is performed. The resulting angular
frequency of motion ω = 2π/T where T = 2πr/v = 2πrm/qBr = 2πm/qB is termed
the (angular) cyclotron frequency:

ωcyclotron =
qB

m
ð18.9.10Þ

258 ELECTROMAGNETISM



18.10 MAGNETIC DIPOLES

For r
! in Equation (18.8.9) far from a localized current distribution, with

1= r
!
−r

!0�� ��≈ 1=rð Þ 1 + 2r �r0=r2ð Þ−1=2,

A
!

r
!� �= μ0

4π

ð
ς

J
!
r
!0� �

r
!
−r!0

�� ��d3r0 = μ0
4π

ð
ς
J
!
r
!0� � 1

r
+
r
!�r!0
r3

+…

� �
d3r0 ð18.10.1Þ

Since J
!
= 0 on the surface S� ς that bounds ς if ς extends beyond the current distri-

bution whiler! � J! = 0 from Equation (18.1.27) and J
! � r! xi = J

! � êi = Ji, the integral of
any component of J

!
over V is zero according to

ð
ς
Jid

3r =
ð
ς
r! � xi J

!	 

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
J
!�r!xi + xir

!�J!

d3r−

ð
ς
xir

! � J!|fflffl{zfflffl}
0

d3r =
ð
S�ς

xi J
!

|{z}
0 on S

� dS!= 0 ð18.10.2Þ

That is, forr! � J! = 0, only the curl of J
!
is finite so that the current flux lines form closed

paths with equal amounts of integrated current flowing backward and forward along

any specified direction. Subsequently, from A
!
× B

!
× C

!	 

= B

!
A
!� C!
	 


− C
!

A
!� B!
	 


,

4π
μ0

A
!

r
!� �≈ 1

r3

ð
J
!
r
!0� �

r
! �r!0d3r0

=
1
r3

ð
r
!� J! r

!0� �
r
!0d3r0−

1
r3

ð
r
!× r

!0 × J
!

r
!0� �	 


d3r0 ð18.10.3Þ

However,

0 = xi

ð
S�ς

x0i J
!
r!0
� �

x0m
	 


�dS!0

= xi

ð
ς
r!0 � x0i J

!
r
!0� �

x0m
	 


d3r0

=
ð
ς
xi
X
k

∂

∂x0k
x0iJk r!0
� �

x0m
� �

d3r0

=
ð
ς
xix

0
i

X
k

Jk r
!0� �

δkmd
3r0 +

ð
ς
xix

0
ir
!0 � J r

!0� �
|fflfflfflfflffl{zfflfflfflfflffl}

0

x0md
3r0 +

ð
ς
xi
X
k

δikJk r
!0� �

x0md
3r0

ð18.10.4Þ
implying ð

J
!
r
!0� �

r
! �r!0d3r0 = −

ð
r
!� J! r

!0� �
r
!0d3r0 ð18.10.5Þ
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The first term on the last line of Equation (18.10.3) consequently equals the negative

of the right-hand side of the first line and hence −4π A
!
=μ0 so that

4π
μ0

A
!

r!
� �

= −
1
2r3

r! ×
ð
r!0 × J

!
r!0
� �

d3r0 =
m
! × r

!

r3
ð18.10.6Þ

where the magnetic dipole moment is defined as

m
! =

1
2

ð
r
!0 × J

!
r
!0� �

d3r0 ð18.10.7Þ

which equals IS
!
for a current loop of area s.

The computation of B
!
= r! × A

!
is simplified by noting that the divergence of the

k r
!
=r3 field of a point charge is zero except at the origin while

m
! �r!
	 


r
! = mx∂x +my∂y +mz∂z
� �

x,y,zð Þ = m
! ð18.10.8Þ

and

m
! �r!
	 
 1

r3
=
X3
i= 1

mi∂i

 !
x2 + y2 + z2
� �− 3

2 = −
3
2

X3
i= 1

2miri
r5

= −3
m
! � r!
r5

ð18.10.9Þ

so that

B
!
= r! × m

! ×
r
!

r3

� �� �
= m

! r! � r
!

r3

� �
|fflfflfflfflffl{zfflfflfflfflffl}

0

− m
!�r! r

!

r3

� �
=
3 m!� r!� �

r!−r2 m!

r5
ð18.10.10Þ

In analogy to an electric dipole in an electric field, the energy of a magnetic dipole in a

field B
!
is given by −m

! � B!, the torque exerted on the loop equals m! × B
!
, and the force

is m
! �r!
	 


B
!
.

18.11 MAGNETIZATION

If a material containsN jð Þ r
!� � atomic and molecular magnetic dipoles aligned in the jth

direction with magnetic moments m
! jð Þ

= IAêj within a volume Δς around the point x,
the resulting jth component of the magnetization is defined as

M
!

r
!� �h i

j
≡Mj r

!� � = m jð ÞN jð Þ r
!� �

Δς
=
IAN jð Þ r

!� �
Δς

ð18.11.1Þ

260 ELECTROMAGNETISM



Accordingly, consider two stacks of heightΔz containingN(z)(y0 −Δy/2) andN(z)(y0 +
Δy/2) wire squares carrying a positive, counterclockwise current I with oriented

surface vectors A
!
=Aêz centered at (x0, y0 −Δy/2, z0) and (x0, y0 +Δy/2, z0), respec-

tively, with A =ΔxΔy, where Δx is the square length along x. Since by the right-hand
rule, for positive, counterclockwise currents, the current contributions from the stacks
at y0 −Δy/2 and at y0 +Δy/2 are directed in the − êx and + êx direction, respectively,
along the y = y0 plane between the two stacks, the total bound current in the êx direc-
tion along this plane is

I bound,zð Þ
x r

!
0

� �
= I N zð Þ y0 +

Δy
2

� �
−N zð Þ y0−

Δy
2

� �� �
×
AΔz
AΔz|{z}

ς

×
Δy
Δy

≈
∂Mz

∂y
ΔyΔz

ð18.11.2Þ

A similar expression arises from the change with respect to z of the density of
y-oriented dipoles except for the presence of an additional minus sign. Summing
the two currents and dividing by the surface area ΔyΔz of the dipole layers perpen-
dicular to the x-direction yields

J
!
bound

h i
x
=
I bound,zð Þ
x + I bound,yð Þ

x

ΔyΔz
= r! × M

!	 

x

ð18.11.3Þ

Since the above formula is valid under the cyclic transformation x! y! z! x,

J
!
bound = r! × M

! ð18.11.4Þ

so that, recalling that Jfree refers to currents that arise from the macroscopic transport

of charges, while B
!
is directly associated with the force on a test charge and is there-

fore sourced by both macroscopic and microscopic currents,

r! × B
!
= μ0J

!
total = μ0 J

!
free + J

!
bound

	 

ð18.11.5Þ

and

B
!
= μ0 H

!
+ M

!	 

ð18.11.6Þ

In general, M
!
=χH

!
, where the magnetic susceptibility χ is a tensor (matrix) and

field-dependent quantity since the induced magnetic moment in ordered materials
is not necessarily aligned with the applied magnetic field. The corresponding mag-
netic permittivity tensor

μ= μ0 I +χð Þ ð18.11.7Þ
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In iron, jμj 	 102 − 103. Although the macroscopic curl of H
!
is determined by Jfree,

from r! � B! = 0,

r! � H! = − r! � �M ð18.11.8Þ

Example

For a cylindrical magnet of length L with a constant magnetization M
!
in the êz

direction, from the absence of free currents, r! × H
!
= 0 while r! � H! = ρm where

ρm = − r! � M! can be interpreted as a uniform positive “magnetic charge” sheet
with width Δz! 0 and charge density σm = ρmΔz = −Δz(dMz/dz) =M at the top
of the bar with a corresponding negative charge sheet along its bottom. Hence,

H
!
, which is oriented along − êz, is determined by the same formulas as the electric

field between two finite area charged sheets and thus approaches zero as L!∞
while B

!
= μ0

�
H
!
+ M

! �
≈μ0 M

!
. Alternatively, Jbound = r! × M

!
is zero except at the

cylinder surface where the bound surface current K
!
bound

	 

θ
=Δr r! × M

!	 

θ
=

Δr dMz=drð Þêr × êz = −Mð Þ − êθð Þ. Hence, the B
!
field is approximated by that of

a long solenoid with surface current nI =K =M, namely, B
!
≈μ0 M

!
, again implying

H
!
≈ 0.

18.12 INDUCTION AND FARADAY’S LAW

Faraday’s law states that a time-varying magnetic flux, ΦB, through a surface S
bounded by a curve C generates an electric field with an integrated value around C
termed the induced emf (electromotive force), given by

V emf ≡
1
q

þ
C�S

F
!�d l!=

þ
C�S

E
!
+ v

! × B
!	 


� d l!= −
d

dt

ð
S
B
!�d A!≡ −

dΦB

dt
ð18.12.1Þ

where E
!
and B

!
are measured in the same inertial frame. The positive direction along C

is determined by the orientation of the chosen surface vector of S according to the
right-hand rule. That is, if a wire loop is placed along C, the magnetic flux change
induces a net voltage change of Vemf around the loop. This produces the same effect
as inserting a battery of voltage Vemf at any point on C such that a positive Vemf

corresponds to the positive voltage terminal of this battery positioned further along
the positive direction on C than the negative voltage terminal. The minus sign in

Equation (18.12.1), commonly referred to as Lenz’s law, indicates that the induced

current generates a magnetic field that counteracts the change in the applied magnetic

field, consistent with energy conservation.
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Faraday’s law can be decomposed into the sum of two contributions, one arising

from a changing magnetic field in a region with instantaneously fixed boundaries and

the second associated with changes in the boundaries of the region for an instantane-

ously constant magnetic field, which generates a force on the carriers and hence an

emf according to F
!
magnetic = qv

! × B
!
. That is, since

d

dt

ð
S tð Þ

B
!
tð Þ�dS! = lim

Δt!0

1
Δt

ð
S t +Δtð Þ

B
!
t +Δtð Þ|fflfflfflfflffl{zfflfflfflfflffl}

B tð Þ+ ∂B

∂t
Δt +…

�dS!−
ð
S tð Þ

B
!
tð Þ �dS!

2
66664

3
77775

=
ð
S tð Þ

∂B
!
tð Þ

∂t
�dS!+ lim

Δt!0

1
Δt

ð
S t +Δtð Þ

B
!
tð Þ�dS!−

ð
S tð Þ

B
!
tð Þ �dS!

" #

≡
∂

∂t

ð
S tð Þ

B
!
tð Þ � dS!

�����
S

+
d

dt

þ
ΔS tð Þ

B
!
tð Þ �dA!

�����
B

ð18.12.2Þ

Equation (18.12.1) can be written schematically as

V emf =
þ
C�S

E
!�dl!

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
= −
Ð
S
∂B

!

∂t � dA
!
���
S

+
þ
C tð Þ�S tð Þ

v
!× B

!	 

�dl!

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
= − d

dt

Ð
ΔS tð ÞB

!�dA!
���
B

ð18.12.3Þ

That the second term in the above equation arises from the change in the surface is

verified by noting that, since A
!
× B

!��� ��� is the area of the parallelogram with sides A
!
and

B
!
, if C r!, t

� �
changes by an amount dr! at r! over a time dt, v! × dl

!
=

d r
!× dl

!	 

=dt = dA=dtê

v
!
× dl

! where ê
dA

!= ê
v
!
× dl

! is oriented along the normal to the sur-

face element dA
!
. Hence,

þ
C tð Þ

v
!× B

!	 

�dl!= −

þ
C tð Þ

v
!× dl

!	 

� B!= −

d

dt

þ
ΔS tð Þ

B
!�dA!

�����
B

ð18.12.4Þ

If the curve C is instead time independent,

þ
C�S

E
!�dl!=

þ
S
r! × E

!	 

�dA!= −

ð
S

∂B
!

∂t
�dA! ð18.12.5Þ
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Which, as C can represent an arbitrary infinitesimal curve at any point, implies the
Maxwell–Faraday equation

r! × E
!
= −

∂B
!

∂t
ð18.12.6Þ

Equation (18.12.3) leads to three standard problem types. (1) If the magnitude or
direction of the enclosed magnetic field changes through a fixed curve in space or wire
loop, the induced emf is evaluated from the first term of Equation (18.12.5) after com-

puting the surface integral of B
!

tð Þ. (2) For loops with changing orientation or cross-
sectional area at a fixed magnetic field, only the second term in Equation (18.12.3) is

present and is evaluated either by performing a line integral of v
! × B

!
or again by cal-

culating the time derivative of the magnetic flux. (3) When both the field and the
bounding curve vary with time, both terms in Equation (18.12.3) contribute, and
these can be either evaluated separately in their top or equivalent bottom forms in this
equation or −dΦB=dt can again be employed.

Examples

1. If the strength of a wire-like filament of magnetic field changes within a curveC
in space at rest in an inertial frame, the line integral of the electric field around

this curve is identical to the line integral of theH
!
field for the equivalent electric

current J
!ðr!Þ = ∂B!ðr!, tÞ=∂t. That is, ∂B/∂t can be viewed as a magnetic current

that generates a rotational E
!
field in space in exactly the same manner that an

electric current J
!
rð Þ induces a rotational H! field.

2. In an electric AC generator, a wire is wound N times around the edges of a
planar geometrical shape of cross-sectional area A to form N identical con-
nected loops such that the flux through the entire wire therefore equals N times

the flux through a single turn. Consequently, rotating the wire in a constant B
!

field with an angular frequencyω such that the surface vector S
!
is parallel to the

magnetic field at t = 0 (S
!
is perpendicular to the plane of the loop) produces

an emf:

V emf = −N
∂ΦB

∂t
= −

∂

∂t
NBAcosωtð Þ =NBAωsinωt ð18.12.7Þ

where ΦB denotes the flux through a single loop of wire.

3. A simple DC electric generator consists of a bar moving in the z = 0 plane with
velocity vxêx on two parallel rails at y = 0 and y = L in a uniform magnetic field

B
!
=Bêz. If a resistor R connects the two rails at, e.g., x = 0, the flux passing
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through the loop formed by the rails, the moving bar, and the resistor,ΦB = BLx.
Then, from the right part of Equation (18.12.1), Vemf = −∂ΦB/∂t = −BLvx.
However, from the left part of the same equation, the emf can be evaluated

directly from the magnetic force F
!
magnetic = −qvxBêy on a fictitious positive

charge in the rail (which equals the electric force in a frame where the rail is

at rest) with an associated emfV emf = +F
!
magnetic � L

!
=q = −BLvx. The sign indi-

cates that the direction from the positive to negative terminals of the effective
battery (generator) voltage is opposite to the positive, here counterclockwise,
orientation of the loop (the direction of the right-hand fingers when the thumb
points along the surface vector that is aligned with the magnetic field). This

generates a clockwise current for finite R with an associated B
!
field that coun-

teracts the flux change. Here, fictitious positive charges in the bar move in

the − êy direction, producing a force on the bar of F
! barð Þ
magnetic = −Q barð ÞvyBêx,

with Q(bar) the total charge in the bar; to maintain the motion requires a power

P= − F
! barð Þ
magnetic � v! =Q barð ÞvyBvx =V emf I.

As the magnetic field generated by a time-varying current, I1, in a wire loop, 1,
varies directly with I1, the resulting magnetic flux ΦB,2 enclosed by a second loop,
2, can be written as

ΦB,2 = L21I1 ð18.12.8Þ

where the constant L21 is termed the mutual inductance with L12 = L21. The emf in the
second loop is then

V2 ≡V emf,2 = −
dΦB,2

dt
≡ −L21

dI1
dt

ð18.12.9Þ

Similarly, a changing current in the first loop alters the magnetic field and therefore
the flux contained within the loop itself. The resulting coefficient of self-inductance is
defined as

V1 ≡V emf,1 = −
dΦB,1

dt
≡ −L11

dI1
dt

ð18.12.10Þ

so that, where the indices are omitted when only loop 1 is present,

ΦB,1 = L11I1 ð18.12.11Þ
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Examples

To find the (self ) inductance of a solenoid (coil) of length l consisting of N turns of
cross-sectional area A, since B = μnI with n =N/l inside the solenoid, from

Ampere’s law,Φsingle
m,1 turn =BA = μnIA. Since this flux passes through each of turn

of the solenoid, the total enclosed flux ΦN turns
m,1 =NμnIA = μn2lIA = L11I, yielding

L≡ L11 = μn2lA.
In a transformer, two wires are woundN1 andN2 times around a common metal

core with cross-sectional area A. Since the magnetization M
!��� ���� H

!��� ���, the B! field

with B
!
= μ0 H

!
+ M

!	 

≈μ0 M

!
is effectively confined to the metal core. Hence,

the B
!
field, μn1I1, generated by a current flowing in the first wire yields a total flux,

Φ1 =N1μnI1A, through the first wire and a flux Φ1 = N2μnI1A in the second wire.
From V = −dΦ/dt, the ratio of input and output voltages is therefore V1/V2 =N1/N2.

18.13 CIRCUIT THEORY AND KIRCHOFF’S LAWS

Electrical circuits containing resistors, capacitors, and inductors are analyzed by
applying Kirchoff’s laws to a circuit diagram that depicts electronic components
linked by wire segments that in turn intersect at junctions. The current in the kth seg-
ment is labeled Ik and is assigned an arrow in the assumed direction of current flow
(the direction a positive charge moves, which is opposite the motion of electrons).

If the direction of the arrow of Ik is drawn incorrectly, its computed value will be
negative. Kirchoff’s laws state: (1) From charge conservation, the total current flow-

ing into a junction is zero. Thus, e.g., if at a junction of three wire segments, the current
arrows for I1 and I2 point toward the junction, while I3 is directed away from the junc-
tion, I1 + I2 + (−I3) = 0. (2) The sum of the changes in voltage ΔV around any closed

loop equals zero since the voltage is a single-valued function of position. Here, when
traversing (i) a generator or a battery in the direction from its negative to its positive
terminal (denoted schematically as small and large lines perpendicular to the wire
direction), ΔV =Vemf (the emf or voltage); (ii) a resistor in the assumed current direc-
tion (the direction of the current arrow),ΔV = −IR; (iii) a capacitor in the current direc-
tion, ΔV = −Q/C; and (iv) an inductor in the current direction,ΔV = −LdI/dt. The sign
changes if a component is traversed in the direction opposite to that of the current
arrow. Physically, (fictitious) positive charges transported from the negative to the
positive terminal of a battery gain an electric potential Vemf. If these charges pass
through a resistor, they accumulate on the side of the resistor away from the current
direction, which therefore acquires a higher potential than the opposing terminal lead-
ing to a voltage change of ΔV = −IR. Positive charges entering a capacitor similarly
accumulate at the terminal opposite the direction of the current resulting in a −Q/C
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voltage change. Finally, an increase in the current yields a counteracting voltage
change − L∂I/∂t across the inductor which functions as an effective battery with polar-
ity opposing the applied source of emf. In a linear circuit, R,C, and L do not depend on
voltage or current, and Kirchoff’s laws generate a separate linear equation for each
loop and junction. These are often simplified by utilizing circuit symmetries. The
standard electrical convention of assigning voltage differences across circuit ele-
ments, which will be used below, employs the voltage drop V in place of −ΔV above
so that V = − LdI/dt, V =Q/C, and V = IR.

Since I/q charges per second lose an energy qV in passing through a resistor, the
power dissipation P = VI = I2R = V2/R. Energy is instead stored in a capacitor by dis-
placing electrons between the opposing plates. When the voltage between the two
plates equals Vintermediate, an energy qVintermediate is required to transport the subse-
quent electron. Since this varies linearly with Vintermediate, to charge the capacitor
to a final voltage V requires an energy given by the total transferred charge times
the average potential, E =QV/2 =CV2/2. As the mechanical state of the capacitor
is identical before and after charging, for conservation of energy to be valid, this
energy can only have been transferred to the electric field. Finally, an energy dE =
LI dI/dt is expended in transferring I charges per second over a voltage V = LdI/dt
in an inductor. Hence, to reach a final current I requires an energy, which is stored
in the magnetic field:

E =
ð tfinal
tinitial

LI
dI

dt
dt = L

ðIfinal
0

IdI =
1
2
LI2final ð18.13.1Þ

In an alternating current (AC) circuit for which the voltages and currents vary sinus-

oidally, squared quantities such as V tð Þð Þ2 =V2
0 sin

2 ωt + δð Þ or I(t)V(t) = I0V0 sin
2 (ωt

+ δ), when I(t) and V(t) are in phase, are averaged over time by sin2(ωt + δ) by 1/2.

Examples

Placing a capacitor, resistor, and inductor in series (i.e., one after another) with a
time-varying voltage source Vemf(t) yields, from the above equations together
with I = dQ/dt,

V emf tð Þ=Vcapacitor +Vresistor +Vinductor =
1
C
+R

∂

∂t
+ L

∂2

∂t2

 !
Q tð Þ ð18.13.2Þ

If the inductor is absent, the capacitor is initially uncharged, and a constant voltage
source is introduced at t = 0 so that Vemf(t < 0) = 0 while Vemf(t > 0) =Vemf,

V emf =
Q

C
+R

dQ

dt
, Q 0ð Þ = 0 ð18.13.3Þ
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Incorporating the boundary condition through the limits of integration,

ðQ tð Þ

Q 0ð Þ

dQ0

CV emf −Q0 =
1
RC

ðt
0
dt0 ð18.13.4Þ

and therefore

− log
CV emf −Q tð Þ
CV emf −Q 0ð Þ
� �

=
t

RC
ð18.13.5Þ

Applying the boundary condition Q(0) = 0 and exponentiating,

Q tð Þ=CV emf 1−e−
t
RC

	 

ð18.13.6Þ

For times long compared to the characteristic time constant τ = RC, the charge on
the capacitor approaches the steady-state value CVemf. If the capacitor is replaced
by an inductor,

V emf tð Þ=RI + L∂I
∂t

ð18.13.7Þ

Here R, C, and Q in Equation (18.13.3) are replaced by L, 1/R, and I, yielding a
time constant τ = L/R.

For a charged capacitor connected at t = 0 to an inductor, Equation (18.13.2)
becomes

d2Q tð Þ
dt2

= −
1
LC

Q tð Þ, Q 0ð Þ=Q0, I 0ð Þ= dQ tð Þ
dt

����
t = 0

= 0 ð18.13.8Þ

with the solution Q(t) =Q0 cos(ωt) where ω
2 = 1/LC. The capacitor cannot imme-

diately discharge as the inductor resists a sudden current increase. Instead, the cur-
rent increases continuously, reaching its maximum value when the capacitor is
completely discharged. The inductor now resists a decreasing current, and the
capacitor therefore charges in the reverse direction. After half a period of oscilla-
tion, the capacitor is recharged to its initial value, but with opposite polarity.

Two resistors or inductors in series are placed one after the other in a circuit. The

same current then passes through both components, while the voltage drops over the

two components add, e.g., ΔVtot = IR1 + IR2 ≡ IRtot, series or ΔVtot = (L1 + L2)∂I/∂t≡
Ltot, series ∂I/∂t. Therefore,

Rtot, series =R1 +R2, Ltot,series =L1 + L2 ð18.13.9Þ
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In parallel, corresponding terminals of each device are connected, resulting in iden-

tical applied voltages. Consequently, Itot = V/Rtot, parallel = I1 + I2 = V/R1 + V/R2 and

1
Rtot,parallel

=
1
R1

+
1
R2

,
1

Ltot,parallel
=

1
L1

+
1
L2

ð18.13.10Þ

The total charge over two parallel capacitors is Qtot =CtotV =C1V +C2V, while for
capacitors in series, the charge across each capacitor is identical (the total charge
enclosed by a surface that encloses the two adjacent inner capacitor plates and their
connecting wire remains equals the static charge residing on the two inner plates inde-
pendent of V ). Hence, Vtot =Q/Ctot =Q/C1 +Q/C2 and

1
Ctot,series

=
1
C1

+
1
C2

, Ctot,parallel =C1 +C2 ð18.13.11Þ

In linearAC circuits Q(t), I(t), and V(t), all vary sinusoidally at the same frequency
although their phases are retarded or advanced relative to each other by capacitors
and inductors. Expressing these as complex phasor quantities ~Q,~I, ~V multiplied by
exp(iωt),

V tð Þ=Re ~Veiωt
� �

= L
d

dt
Re ~Ieiωt
� �

=Re iωL~Ieiωt
� � ð18.13.12Þ

For a capacitor,

I tð Þ =Re ~Ieiωt
� �

=
dQ tð Þ
dt

=C
d

dt
Re ~Veiωt
� �

=Re iCω~Veιωt
� � ð18.13.13Þ

Accordingly, for AC circuits, resistors, capacitors, and inductors can be modeled
as generalized resistors with R replaced by the impedance, Z = ~V=~I, of each compo-
nent, where

Zresistor =R

Zcapacitor =
1

iωC
Zinductor = iωL

ð18.13.14Þ

After all impedances are combined by applying the formulas for resistors in parallel
and series, the output quantity equals the real part of its phasor multiplied by
exp(iωt).
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Example

The current through a resistor and capacitor placed in series with an alternating
voltage source is obtained by combining the impedances of R and C. Accordingly,
from

I tð Þ=Re
~V

Ztotal
eiωt

� �
ð18.13.15Þ

the phases satisfy arg(I(t)) = arg(V(t)) − arg(Ztotal) with

Ztotal =Zresistor + Zcapacitor =
− i

ωC
+R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 +

1
ωC

� �2
s

e− i tan
−1 1

ωRC

� �
ð18.13.16Þ

.

18.14 CONSERVATION LAWS AND THE STRESS TENSOR

The power supplied to charges within a volume ς per unit time or, equivalently, the
work performed on these charges per unit time can be expressed entirely in terms of
fields as

P =
ð
ς
F
!� v!d3r

=
ð
ς
ρ E

!
+ v! × B

!	 

� v!d3r =

ð
V
ρE

!� v!d3r =
ð
V
E
!� J!d3r

=
ð
ς
E
!� r! × H

!
− ∂D

!

∂t

� �
d3r

ð18.14.1Þ

Employing (recall that the subscript E orH denotes the field that the gradient is applied
to and A � (B ×C) = B � (C × A))

r! � E
!
× H

!	 

=r!E � E

!
× H

!	 

+r!H � E

!
× H

!	 


= H
! � r!E × E

!	 

− E

! � r!H × H
!	 


= H
! � r! × E

!	 

− E

! � r! × H
!	 
 ð18.14.2Þ

together with r! × E
!
= −∂ B

!
=∂t and Gauss’s law yields

P= −

ð
S�ς

E
!
× H

!	 

|fflfflfflfflffl{zfflfflfflfflffl}

S
!
P

� d A! −
d

dt

ð
ς

1
2

B
!� H! + E

! � D!
	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wE

d3r ð18.14.3Þ
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where the energy density wE is the energy per unit volume contained in the electric

field distribution, while the Poynting vector S
!
P corresponds to the energy transported

by the electric fields through a perpendicular cross section of unit area per unit time
(if the Poynting vector points into the volume, P and therefore the work performed on
the charges is positive).

The expression for wE can be reproduced by first calculating the energy in an ideal
infinitesimal parallel plate capacitor, which effectively confines the fields to the vol-
ume between the plates. With E = V/d = σ/ε, where σ =Q/A, where d and A are the
separation and the area of the plates, from the discussion above Equation (18.13.1)

and noting that D
!
and E

!
are parallel,

we =
1
2
QV =

1
2
εAEð Þ Edð Þ= 1

2
E εEð ÞAd = 1

2
E
! � D! d3r ð18.14.4Þ

Since in a thin capacitor fringing fields can be neglected, an arbitrary field can be repre-
sentedas the fieldgeneratedbyaninfinitenumberof infinitesimal thincapacitorspositioned
throughout space, leading to the electric component inwE. The magnetic term is similarly

obtained by noting thatH
!
and B

!
are similarly confined by a long solenoid. Therefore,

any magnetic field can be represented as that formed from an infinite set of solenoids
filling space, each directed along a magnetic field line. For each infinitesimal solenoid
with n turns per unit length, L = μn2lA, hence from W = LI2/2 and B = μH = μnI,

wm =
1
2
μnIð Þ nIð ÞAl = 1

2
B
! � H! d3r ð18.14.5Þ

As well, the Lorentz force on a continuous isolated charge and current distribution
can be written exclusively in terms of electric and magnetic fields according to

F
!
=
d p

!

dt
=
ð
ς
ρE

!
+ J

!
× B

!	 

d3r =

ð
r! � D!
	 


E
!
+ r! × H

!
−
∂D

∂t

� �
×B

� �
d3r

ð18.14.6Þ
For a spatially homogeneous medium, B

!
= μH

!
and D

!
= εE

!
, yielding

r! × H
!	 


× B
!	 


a
= εaip|{z}

εipa

εijk∂jHk

� �
Bp

= δjpδka−δjaδkp
� �

∂jHk

� �
Bp

= ∂jHa

� �
Bj− ∂aHkð ÞBk

= ∂j HaBj

� �
−Ha∂jBj|{z}

0

− ∂aHkð ÞBk|fflfflfflfflffl{zfflfflfflfflffl}
1
2 ∂a HkBkð Þ

= ∂j HαBj−
1
2
H
! � B!δαj

� �
ð18.14.7Þ
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and

− ∂D
!

∂t × B
!

� �
a

+ r! � D!
	 


Ea = −
∂

∂t
D
!
× B

!	 
� �
a

+
D
!
× ∂B

!

∂t

 !
a|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

− D
!
× r!E ×E

!� �� �
= D

!�r!E

� �
E
!
−r!E D

!�E!
� �

+ r! � D!
	 


Ea

= −
∂

∂t
D
!
× B

!	 
� �
a

+ Dj ∂jEa

� �
|fflfflfflfflffl{zfflfflfflfflffl}

∂j EaDjð Þ−
,

Ea ∂jDjð Þ

−Dj ∂aEj

� �
|fflfflfflfflffl{zfflfflfflfflffl}
1
2∂a EjDjð Þ

+
,
∂jDj

� �
Ea

= −
∂

∂t
D
!
× B

!	 
� �
a

+ ∂j EaDj−
1
2
E
! �D! δaj

� �

ð18.14.8Þ

With c2 = 1/με,

d p
!

dt
+
1
c2

d

dt

ð
ς
E
!
× H

!	 

d3r =

ð
S�ς

T �d S! ð18.14.9Þ

after applying Gauss’s law. The i, j component of the Maxwell stress tensor tensor
(e.g., matrix) T

Tij =EiDj +BiHj−
1
2

E
!� D! + B

! � H!
	 


δij ð18.14.10Þ

corresponds to the ith component of the momentum crossing a surface perpendicular
to the jth coordinate direction per unit time, while the momentum density in the

electromagnetic fields (the momentum per unit volume) equals ðE! × H
!Þ=c2. Since

the energy transported through a unit cross-sectional area in one second is distributed
over a total volume equal to c, comparing with the discussion following
Equation (18.14.3) indicates that the momentum in the field satisfies p = E/c, as

required by relativity. Note that in analogy to the relationship F
!
= − r!U between

force and the potential energy of a scalar field, for the vector electromagnetic fields,
the force is directly related to the divergence of the Maxwell stress tensor.

Examples

1. In a cylindrical resistor of radius awith a positive terminal at x = 0 and a grounded
terminal at x = L, the terminal voltages differ by IR, yielding an electric field
E = −ΔV=Δx = IR=Lêx within the resistor and a magnetic field H = I=2πaêθ at
its cylindrical outer surface. Integrating the Poynting vector − êrI2R=2πaL over
thissurface indicates that theworkdoneon thecharges inside the resistorandhence
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their mechanical energy (which evolves into heat) increases by an amount I2R per
unit timeconsistentwithEquation (18.14.3). Parenthetically, as the boundary con-
ditions insure the continuity of the tangential electric field component at the circu-
lar outer surface of the resistor, the Poynting vector is identical infinitesimally
inside or outside the resistor. That is, the surface layers of positive and negative
charge that accumulate at the high- and low-voltage end contacts, respectively,

generate E
!
andD

!
fields that obey E

!
= ε0εr D

!
both inside and outside the resistor.

However, since both the tangential component ofD
!
and the normal component of

E
!
(as a result of the existence of a surface charge layer) are discontinuous along the

cylindrical outer surface, E
!
k can remain continuous.

2. For a cylindrical capacitorwith a radiusR, lengthL, and plate areaA = πR2 charging
fromzerotoachargeQalongthe lowerplateatz = 0in timeT, theelectric fieldwithin
the capacitor varies linearly from 0 toQ=εAêz, while the magnetic field at the outer
surface of the capacitor, which remains constant in time, is sourced by the displace-

ment current density Jdisplacement =Q/(AT) and hence equalsH
!
=Q= 2πRTð Þêθ. The

product of the average value of the Poynting vector over the charging time with
2πRLT therefore yields the final stored energy QV/2 =QEL/2.

The inductance or capacitance of a component can be obtained by evaluating the
total energy in the magnetic or electric field and, respectively, equating the result to
LI2/2 or Q2/2C.

Examples

For a long cylindrical transmission line of length Λ consisting of a negligibly thin
inner cylinder of radius r< conducting a current I down the cylinder surrounded
by a similarly thin sheath of radius r> carrying a return current − I between the

two conductors, H
!
= I=2πrêϕ and hence

1
2

ðr >
r<

B
! �H!d3r = 1

2

ðr>
r <

μI

2πr

� �
I

2πr

� �
2πrΛdr =

μΛ
4π

log
r>
r<

� �
I2 =

1
2
LI2 ð18.14.11Þ

which determines L. The capacitance is similarly obtained by computing the total
electric field energy when charges Q and −Q are located on the inner and outer
conductors:

1
2

ðr>
r<

D
! �E! d3r = 1

2

ðr >
r <

Q

2πrΛ

� �
Q

ε2πrΛ

� �
2πrΛdr =

Q2

4πεΛ
log

r>
r<

� �
I2 =

Q2

2C

ð18.14.12Þ
The force exerted in a parallel plate capacitor by the positive plate at z = 0 on

the negative plate with area A at z = a can be evaluated by displacing this plate to
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z = a +Δz outward. The product of the energy density E
! � D! =2 with the additional

volume results in a change in field energy ΔE = σ2AΔz/2ε, yielding a force Fz/A =
(−ΔE/Δx)/A = −σ2/2ε per unit area. This result can however also be obtained by
integrating the stress tensor over a surface parallel to and between the two capacitor
plates joined to a hemisphere in the z > 0 half-space at r =∞. As the surface vector
in the region between the two plates surrounding the plate at z = a points in the − êz
direction,

F
!

A
=
1
A

ð
S
T �d S!= −T � êz = E

!
D
! � − êzð Þ
h i

−
1
2
E
! � D! − êzð Þ= −

σ2

2ε
êz ð18.14.13Þ

18.15 LIENARD–WIECHERT POTENTIALS

In the Lorentz gauge, the electric and magnetic fields of time-varying source distribu-
tions can be directly determined from the Green’s function,G r!−r!0, t− t0

� �
, of the wave

operator, satisfying

□G r!−r!0, t− t0
� �

= δ3 r!−r!0
� �

δ t− t0ð Þ ð18.15.1Þ

The dependence on r
!
−r

!0 and t − t0 instead of r
!, t
� �

and r
!0, t0
� �

individually results
from the uniformity of space and time. The solution of

□ϕ r
!, t
� �

= μ0J
i r

!, t
� � ð18.15.2Þ

in the absence of boundaries is then

ϕ r!, t
� �

=ϕ0 r!, t
� �

+ μ0

ð
ς
G r!−r!0, t− t0
� �

J i r!0, t0
� �

d3r0dt0 ð18.15.3Þ

Here, ϕ0(r, t) solves the homogeneous equation □ϕ0 r!, t
� �

= 0, typified by linear

combinations of monochromatic plane waves, Re Aexp i ωt− k
!� r!

h i	 
n o
with wave-

number k≡ j k!j =ω=c, general nonmonochromatic planar f t− êk̂ � r!=c
� �

solutions or
spherical solutions, f(t ± r/c)/r, of (1/c2)∂2ϕ0(r, t)/∂t

2 − (1/r)∂2rϕ0(r, t)/∂r
2 = 0.

Heuristically, G r
!, t
� �

resembles the potential of a point charge of magnitude q = −ε
that exists at r = 0 for at a single instant in time. Hence, for t≈ 0, ϕ(r, t)≈ δ(t)/4πr.
Comparing to the general radially outgoing solution to the wave equation, f(t − r/c)/r,
yields
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G r
!, t
� �

=
1
4πr

δ t−
r

c

	 

ð18.15.4Þ

To verify that this corresponds to the Green’s function, observe that (the last line
requires δ3 r

!� �
δ t−r=cð Þ = δ3 r

!� �
δ tð Þ)

r!|{z}
êr

∂

∂r

δ t−r=cð Þ
r

� �
= δ t−r=cð Þ r! 1

r

� �
|fflfflffl{zfflfflffl}
êr

∂

∂r

1
r
= −

êr
r2

+
1
r
r! δ t−r=cð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
−
êr
c

dδ t−r=cð Þ
dt

r! �|{z}
1
r2

∂

∂r
r2êr �

r! δ t−r=cð Þ
r

� �
= −r! � êr

r2

� �
|fflfflfflfflffl{zfflfflfflfflffl}
4πδ3 r

!ð Þ

δ t−r=cð Þ + − êr
r2

� − êr
c

dδ t−r=cð Þ
dt

−
1
c

dδ t−r=cð Þ
dt

1
r2

∂

∂r
r +

1
rc2

d2δ t−r=cð Þ
dt2

= −4πδ3 r!
� �

δ tð Þ+ 1
rc2

d2δ t−r=cð Þ
dt2

ð18.15.5Þ

Consequently, Aμ in the Lorentz gauge is given by, where tretarded = t− r
!
−r

!0�� ��=c,

Aμ r
!, t
� �

=
μ0
4π

ð
ς
d3r0

ð
dt0

Jμ r
!0 t0ð Þ, t0� �

r
!
−r

!0 t0ð Þ�� �� δ t− t0−
r
!
−r

!0�� ��
c

 !

=
μ0
4π

ð
ς
d3r0

J μ r
!0 tretardedð Þ, tretarded
� �
r
!
−r

!0 tretardedð Þ�� ��
ð18.15.6Þ

18.16 RADIATION FROM MOVING CHARGES

The scalar potential of a single charged particle with ρ r
!, t
� �

= qδ r
!
− x

!
tð Þ� �

is from
Equation (18.15.6):

V r
!, t
� �

=
μ0c

2

4π

ð
ς
d3r0

ð
dt0

qδ r
!0− x

!
t0ð Þ� �

r
!
−r

!0�� �� δ t− t0−
r
!
−r

!0�� ��
c

 !

=
1

4πε0

ð
dt0

q

r
!
− x

!
t0ð Þ�� ��δ t− t 0−

r
!
− x

!
t0ð Þ�� ��

c

 ! ð18.16.1Þ
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The zero of the argument of the delta function defines t0 implicitly as a function of r!.

Since δ f tð Þð Þ = δ tð Þ= df tð Þ=dtj jt = f −1 0ð Þ while, with β
!
= v t0ð Þ=c,

d r
!
− x

!
t0ð Þ�� ��

dt0
=
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
!
− x

!
t0ð Þ� � � r

!
− x

!
t0ð Þ� �q

dt0
= −

r!− x! t0ð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
!
− x

!
t0ð Þ� �2q � d x

!
t0ð Þ

dt0
= −cêr!−x! t0ð Þ � β

!

ð18.16.2Þ

Equation (18.16.1) becomes, where κ≡ 1− êr!−x! t0ð Þ � β
!
, R

!
≡ r

!
− x

!
t0ð Þ and the label

retarded indicates that t0 satisfies t0 = t− r!− x! t0ð Þ�� ��=c,

V r!, t
� �

=
1

4πε0

q

κ r
!
− x

!
t0ð Þ�� ��

" #
retarded

=
1

4πε0

qc

cR− v
! � R!

� �
retarded

ð18.16.3Þ

and analogously

A
!

r
!, t
� �

=
μ0
4π

q v
!

κ r
!
− x

!
t0ð Þ�� ��

" #
retarded

=
v
!

c2
V r

!, t
� � ð18.16.4Þ

which are termed the Lienard–Wiechert potentials. The factor κ, which approaches
unity for nonrelativistic motion, results from the addition at r

!, t
� �

of the potentials gen-

erated by sources at x
!
t0ð Þ along the surface of a collapsing sphere, a distance

r
!
− x

!
t0ð Þ�� �� = c t− t0ð Þ from r

!at each earlier time t 0. That is, ifΔt is the time interval over
which the sphere intercepts a body with extent a and traveling with a velocity vr!−x! t0ð Þ =

v
! � êr!−x! t0ð Þ in the direction of êr!−x! t0ð Þ, its potential accumulates over a distance

D= a+ vr!−x! t0ð ÞΔt = cΔt implying Δt = a=
�
c−vr!−x! t0ð Þ

�
and is accordingly enhanced

relative to that of a stationary particle by the factor D=a = 1= 1−vr!−x! t0ð Þ=c
	 


.

From E
!
= −∂ A

!
=∂t− r! V , after involved manipulations, the radiation fields, which

unlike static fields decay asymptotically as 1= r
!
− x

!
t0ð Þ�� ��, can be isolated. For these

fields, the associated Poynting vector varies as 1= r
!
− x

!
t0ð Þ�� ��2, and the total radiated

power, computed by integrating the Poynting vector over a sphere of radius

r!− x! t0ð Þ�� ��, remains finite as r!− x! t0ð Þ�� ��! ∞ . The radiated electric field of a point
charge is given by

E
!

r
!, t
� �

=
q

4πε0

1

cκ3 r
!
− x

!
t0ð Þ�� �� êr!−x! t0ð Þ × êr!−x! t0ð Þ− β

!	 

×
_
β
!

� �� �
retarded

ð18.16.5Þ
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For a nonrelativistic charge, the time derivative of Equation (18.16.4) yields, omitting
terms that contain additional powers of 1= r

!
− x

!
t0ð Þ�� �� or factors of β,

∂ A
!

∂tκ
=

1
4πε0c

q
_
β
!

r
!
− x

!
t0ð Þ�� ��
������
retarded


!
v�c

1
4πε0c

q
_
β
!

r
!
− x

!
t0ð Þ�� ��
������
retarded

ð18.16.6Þ

For a coordinate system with its origin near the charge position, the electric field propa-
gates radially far from the source so that the gradient can be approximated by

r! = êr!−x! t0ð Þ∂=∂ r
!
− x

!
t0ð Þ�� ��� � � , which when acting on a function of f t− r

!
− x

!
t0ð Þ�� ��=c� �

is equivalent to −
�
êr!−x! t0ð Þ=c

�
∂=∂t. Hence, from Equation (18.16.3), noting that only

the time derivative of v!yields an additional factor of R
!
that leads to a 1/R dependence

at large R, where the subscript “retarded” is suppressed:

r! V = −
1
c
ê
R
!
∂V

∂t
≈ −

qc

c4πε0
ê
R
!

−1

cR− v
!� R!

	 
2 −c
_
β
!� R!

� �
≈ −

q

4πε0c

ê
R
!
_
β
!�e

R
!

r
!
− x

!
t0ð Þ�� ��
ð18.16.7Þ

Alternatively, the Lorentz condition, ∂V=∂t = −c2 r! � A!, where A
!

is given by
Equation (18.16.4), yields V:

∂V

∂t
≈ −

qc2μ0
4π

−
1
c
êr!−x! t0ð Þ �

∂

∂t

� �
� c β

!

r
!
− x

!
t0ð Þ�� ��

V≈
qc2μ0
4π

êr!−x! t0ð Þ � β
!

t−
r
!
− x

!
t0ð Þ�� ��

c

 !

r
!
− x

!
t0ð Þ�� ��

ð18.16.8Þ

from which, again only retaining the 1/R term,

r! V≈
q

4πε0
−
1
c
êr!−x! t0ð Þ �

∂

∂t

� �
êr!−x! t0ð Þ � β

!

r!− x! t0ð Þ�� �� = −
q

4πε0c

êr!−x! t0ð Þ �
_
β
!

� �
êr!−x! t0ð Þ

r!− x! t0ð Þ�� �� ð18.16.9Þ

Combining Equations (18.16.6) and (18.16.9) with C
!
− êr!−x! t0ð Þðêr!−x! t0ð Þ � C

!Þ≡
C
!
⊥ = − êr!−x! t0ð Þ × ðêr!−x! t0ð Þ × C

!Þ yields, where a! represents the particle acceleration,
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E
!
=

q

4πε0c

êr!−x! t0ð Þ × êr!−x! t0ð Þ ×
_
β
!

� �

r
!
− x

!
t0ð Þ�� ��

2
664

3
775
retarded

= −
q

4πε0c2
a
!
⊥ x

!
t0ð Þ, t0� �

r
!
− x

!
t0ð Þ�� ��

" #
retarded

ð18.16.10Þ
Equation (18.16.10) can further be obtained from the field of a stationary point

charge initially at the origin that accelerates with uniform acceleration aêx between
times t0 and t0 +Δt = t0 + v/a and then travels with a constant speed v. Hence, the elec-
tric field for r > c(t − (t0 +Δt)) is that of a stationary charge at the origin, while for r < c
(t − t0) the field coincides with the 1/r2 Coulomb field (which is neglected in the above
equations) of a point charge moving with a velocity vêx. The latter field must coincide
with the field of a point charge located at a constant position with respect to a frame
moving with velocity v and hence in the nonrelativistic approximation radiates out-
ward with spherical symmetry from the charge’s current location. Since the two sets
of field lines are displaced by vt sin θ, where θ is measured from the x-axis (as is

easily verified for θ = 0, π), continuity of E
!
in the region of radius cΔt between

the two regions requires

−
E⊥

Er
=
vt sinθ
cΔt

=
v r=cð Þsinθ
c v=að Þ =

ar sinθ
c2

ð18.16.11Þ

which together with Er = q/4πε0r
2 reproduces Equation (18.16.10). Note that the

distance between the field lines of the initial stationary charge and the field lines
of the charge at position vt grows linearly with t and hence with r = ct. This additional
factor transforms the 1/r2 dependence of the static Coulomb field into a 1/r radia-
tion field.

Far from the charge, applying the large-distance approximation to r! in r! × E
!
=

−∂ B
!
=∂t,

r! × E
!
≈ −

1
c
êr!−x! t0ð Þ ×

∂ E
!

∂t
= −

∂ B
!

∂t
ð18.16.12Þ

Integrating with respect to time

B=
1
c
êr!−x! t0ð Þ × E

! ð18.16.13Þ

E
!
× B

!
is accordingly oriented along êr!−x! t0ð Þ and the total radiated power is given by the

Larmor formula, where since the average, 1/3, of hcos2θi over all angles can be com-
puted from

x2 + y2 + z2
 �

r2h i = 1 = 3
x2
 �
r2h i = 3 cos2θ

 �
= 3 1− sin2θ

 �� � ð18.16.14Þ
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integrating the Poynting vector over a spherical surface S
!
centered at x! t0ð Þ yields

P=
þ
S
S
!�d A! =

þ
S
EHêr!−x! t0ð Þ �d S

!
=

1
μ0c

þ
S
E2êr!−x! t0ð Þ � d S

!

=
1
μ0c

qa

4πε0c2 r
!
− x

!
t0ð Þ�� ��

 !2

r
!
− x

!
t0ð Þ�� ��24π sin2θ

 �

=
1

ε0μ0c2

� �
1

16π2ε0

q2a2

c3
8π
3

=
μ0
6π

q2a2

c

ð18.16.15Þ

Example

An electron bound by a harmonic restoring force and a velocity-dependent damp-
ing force in the presence of an electromagnetic wave with frequency ω is
described by

∂2x

∂t2
+ γ

∂x

∂t
+ω2

0x =
q

m
Re E0e

iωt
� � ð18.16.16Þ

This equation is solved by adding the homogeneous, zero driving force solution to
the inhomogeneous solution incorporating the driving force. The homogeneous
solution describes a damped, undriven oscillator and is determined by the initial
conditions. The inhomogeneous, steady-state solution is obtained by inserting x
= Re(x0e

iωt) into Equation (18.16.16), from which

x0 =
qE

m ω2
0−ω

2 + iγω
� � ð18.16.17Þ

Equation (18.16.15) then yields for the time-averaged radiated power with a =

Re(−ω2x0 exp(iωt)), where ω2
0−ω

2 + iγω= ω2
0−ω

2
� �2

+ γ2ω2
	 
1=2

exp ϕ0ð Þ with

ϕ0 = arctan γω= ω2
0−ω

2
� �� �

(the result below is also obtained in a somewhat dif-

ferent form by evaluating Re ω2
0−ω

2− iγω
� �

cosωt + isinωtð Þ� �
)

Ptime averaged =
1

4πε0

2
3

q2

m2c3
qEω2ð Þ2

ω2
0−ω

2
� �2

+ γ2ω2

 !
cos2 ωt +ϕ0ð Þ

=
1

4πε0

1
3

q2

m2c3
qEω2ð Þ2

ω2
0−ω

2
� �2

+ γ2ω2

 !
ð18.16.18Þ
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The Thomson cross section of an electron is defined as the ratio of the energy

radiated by a free electron in the presence of an electric field, obtained by inserting a
!

= e E
!
=m in Equation (18.16.15), to the incident energy flux (Poynting vector), E2/μ0c

= cε0E
2,

σThomson =
P

S
=
8π
3
r2Thomson ð18.16.19Þ

in which the classical electron radius, denoted by rThompson or re, is by convention the
radius for which twice the electric field energy equals the relativistic electron rest
energy, e.g.,

mec
2 = 2

ε0
2

ð
E2d3x = ε0

ð∞
rThompson

e

4πε0r2

� �2

4πr2dr =
e2

4πε0rThompson
ð18.16.20Þ

The power radiated by a relativistic electron can be obtained by writing the
Larmor formula in covariant form. Recalling that dt = γ>dtrest≡ γ>dτ with

dτ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dtð Þ2− dxð Þ2=c2

q
,

P= −
2
3
rThompson

mc

dpμ
dτ

dpμ

dτ
=
2rThompsonγ2>

3mc
d p

!

dt

� �2

−
1
c2

dE

dt

� �2
 !

ð18.16.21Þ

However, since E2 − c2p2 =m2c4,

dE

d pcð Þ =
pc

E
= β < ð18.16.22Þ

and therefore

P=
2rThompsonγ2>

3mc
d p

!

dt

� �2

− β2<
dp

dt

� �2
 !

ð18.16.23Þ

In bremsstrahlung, (breaking radiation) an electron traveling along a line changes its

velocity by Δν between t0 and t0 +Δt. With γ2> = 1−β2<
� �−1

, a pulse is then generated
from t = t0 + R/c to t = t0 +Δt + R/c at a distance R from the electron with a total power

P=
1

4πε0

2e2

3m2c3
Δp
Δt

� �2

=
1

4πε0

2e2

3m2c3
1−β2<
� � Δp

Δτ

� �2

ð18.16.24Þ

and angular distribution for nonrelativistic motion,

dP

dΩ
=

1
μ0c

q

4πε0

Δvsinθ
Δtc2

� �2

ð18.16.25Þ
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From the relation between the width of a pulse and the width of its Fourier transform,
such a pulse exhibits a frequency spread of Δf≈ 1/Δt.

In contrast to bremsstrahlung, in synchrotron radiation, a particle changes direc-
tion at constant speed so that dp/dt = 0. For a highly relativistic electron orbiting in a
circle at constant energy d p

!
=dt

�� �� =ω p
!�� ��, the first term of Equation (18.16.23) yields

P=
1

4πε0

2
3

e2

m2c3
γ2>ω

2 p!
�� ��2 ð18.16.26Þ

which contains an additional factor of γ2> compared to linear motion. Since relativis-

tically p
!�� ��=mc β

!
<

��� ���γ > while ω = v/r = cβ</r with r the orbit radius,

P=
1

4πε0

2
3
e2c

r2
β4< γ

4
> ð18.16.27Þ

For an electron in the constant magnetic field of a synchrotron, dp=dtj j=
q v

! × B
!
= evB = ecβ <B resulting in, for β<≈ 1,

P=
1

4πε0

2
3

e4

m2c
γ2> β

2
<B

2≈
1

4πε0

2
3

e4

m2c
γ2>B

2 ð18.16.28Þ

The far-field angular distribution of the Poynting vector in the radial direction at large

distances emerging from an accelerated relativistic charge is, where
_
β
!
⊥ =

_
β
!
sinθ and θ

represents the angle between the direction of motion and the unit vector and n̂ denotes
the direction from the particle to the observation point.

S
! � n̂ = c

ε0

1
4π

e

cκ3R

_
β
!
⊥

����
����
2

t0 = t−
R t0ð Þ
c

ð18.16.29Þ
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19
WAVE MOTION

Sinusoidal wave motion with an amplitude-independent period occurs in one dimen-
sion for restoring forces that vary as the negative of the departure from equilibrium. In
an infinite uniform linear medium in several dimensions, however, for a general
displacement, different points in the medium experience unequal restoring forces
and therefore accelerate at different rates. As a consequence, the field pattern changes
with time. However, for a harmonic perturbation, the curvature of the disturbance is
proportional to the negative of its amplitude. For restoring forces that are proportional
to the curvature, which generally applies near equilibrium, all points in the medium
therefore oscillate with the same frequency, and the shape of the resulting “modal”
pattern remains unchanged with time. Since in a linear system a general displacement
can be expressed as a sum of such patterns, this chapter is largely concerned with
sinusoidal waves and their generalizations.

19.1 WAVE EQUATION

The variation in the pressure of a material with volume at constant entropy is termed
its bulk modulus:

Kadiabatic = −V
dp

dV

����
S

ð19.1.1Þ
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In a section with equilibrium length lequilibrium of a gas-filled tube of constant cross
section A, the volume occupied by the gas V = Alequilibrium, and hence, dp = dF/A
and dV = Adl, yielding

dF = −KadiabaticA
dl

lequlibrium
ð19.1.2Þ

In other words, identical forces are required to extend 1 m of gas by 1 cm and 10 m of
gas by 10 cm. In a solid, Kadiabatic is replaced by Young’s modulus Y.

If x denotes the equilibrium position of each segment of gas and f(x, t) the displace-
ment of this segment from x at time t, the net force F(x, t) on the section of gas with
equilibrium position between x −Δx/2 and x +Δx/2 equals the sum of the rightward
force Fright =KAΔl(x +Δx/2)/Δx arising when the segment with equilibrium position
between x and x +Δx is lengthened from Δx to Δx +Δl and a leftward force Fleft =
−KAΔl(x −Δx/2)/Δx from an elongation of the segment with equilibrium position
from x −Δx to x:

F x, tð Þ=Kadiabatic
A

Δx
Δl x+

Δx
2

� �
−Δl x−

Δx
2

� �� �

=KadiabaticA
f x+Δxð Þ− f xð Þ

Δx
−
f xð Þ− f x−Δxð Þ

Δx

� �

=KAΔx
∂2f x, tð Þ
∂x2

ð19.1.3Þ

Thus, if the gas at x +Δx/2 is compressed or expanded by the same amount as the gas
at x −Δx/2, the rightward and leftward forces balance; otherwise, the element with
mass ρV = ρAΔx accelerates according to

ma= ρAΔx
∂2f x, tð Þ
∂t2

=F =KAΔx
∂2f x, tð Þ
∂x2

ð19.1.4Þ

which yields the scalar wave equation (note that K/ρ has dimensions of v2)

∂2f x, tð Þ
∂t2

−
K

ρ

∂2f x, tð Þ
∂x2

= 0 ð19.1.5Þ

In a three-dimensional homogeneous medium, since the above analysis applies to
longitudinal displacements in any direction,

∂2f r
!, t
� �
∂t2

−
K

ρ
r2f r

!, t
� �

= 0 ð19.1.6Þ

Two-dimensional transverse waves on an ideal string under tension T situated
along the x-axis at equilibrium are similarly analyzed. Denoting by y = f(x, t) and
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θ(x, t) the vertical displacement of the string at x and the angle the tangent to
the string describes with respect to the x-axis, the upward force at the
right boundary of the segment between x −Δx/2 and x +Δx/2 is T sin θ(x +Δx/2, t)≈
T tan θ(x +Δx/2, t) = T∂f/∂xjx +Δx/2, while at the left boundary the force (which is
negative since the tension at the two ends of any string segment points in
opposing directions) equals − T∂f/∂xjx −Δx/2. Summing these and applying Newton’s
law yields

F x, tð Þ= ρAΔx∂
2f x, tð Þ
∂t2

= TΔx
1
Δx

∂f

∂x

����
x + Δx

2

−
∂f

∂x

����
x−Δx

2

 !" #
= TΔx

∂2f x, tð Þ
∂x2

ð19.1.7Þ

Accordingly, Equation (19.1.5) is replaced by

∂2f x, tð Þ
∂t2

−
T

ρA

∂2f x, tð Þ
∂x2

= 0 ð19.1.8Þ

19.2 PROPAGATION OF WAVES

In terms of the wave velocity v =
ffiffiffiffiffiffiffiffiffiffiffi
T=ρA

p
or

ffiffiffiffiffiffiffiffiffi
K=ρ

p
, Equations (19.1.5) and (19.1.8)

become

∂2f x, tð Þ
∂t2

−v2
∂2f x, tð Þ
∂x2

= 0 ð19.2.1Þ

Factorizing (cf. Eq. 11.5.1)

∂

∂t
−v

∂

∂x

� �
∂

∂t
+ v

∂

∂x

� �
f x, tð Þ = 0 ð19.2.2Þ

yields

f x, tð Þ= gright x−vtð Þ+ gleft x+ vtð Þ ð19.2.3Þ

where the right and left traveling solutions, gright(x − vt) and gleft(x − vt), propagate
without distortion with velocity v. The form of these solutions is determined by
the initial and boundary conditions.

While the form of f (x, t) is generally time dependent, the plane wave solutions
(here generalized to three dimensions)

f r
!, t
� �

=Acos k ê
k
! � r!−vt

h i
+ δ


 �
ð19.2.4Þ
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where ê
k
! denotes a unit vector in the propagation direction, possess an invariant

pattern with a linearly varying phase in all symmetry directions and are sometimes

termed free space modes. The quantities k
!
= kê

k
! and k are termed the wavevector

and wavenumber, respectively, and possess units of [k] = [radians/m]. In phasor

notation (the symbol Re is often omitted),

f r
!, t
� �

=Re Aeiδek
!� r!−ωt

h i
≡Re Aphasore

k
!� r!−ωt

h i
ð19.2.5Þ

Equation (19.2.4) remains invariant when r
! is replaced by r

! + êk2π=k; hence, 2π/k
corresponds to the wavelength:

λ =
2π
k

meters
wavelength

� �
ð19.2.6Þ

Similarly, the invariance under t! t + 2π/ω relates the angular frequency, ω, with
units of [radians/second] = [1/T]; the linear frequency, f, in [Hertz] = [cycles/second]
= [1/T] ; and the period, T, by

T =
2π
ω

=
1
f

seconds
cycle

� �
ð19.2.7Þ

For linear media, the wave frequency does not depend on position; otherwise, the
number of waves entering a localized region per unit time would differ from the
number leaving, resulting in a divergent or vanishing power density. The velocity
of a point of constant phase on the wave, termed the phase velocity, can be obtained
by considering the point with zero initial phase, δ = 0 in Equation (19.2.4), which
translates in time according to kr −ωt = 0 so that

vp =
r

t
=
ω

k
=
2π=T
2π=λ

=
λ

T
= λf ð19.2.8Þ

Alternatively, since a wave advances by a wavelength in one period, its velocity is
vp = λ/T, or as f wavelengths per second pass a given point each second, the distance
traveled per second is vp = λf.

For aone-dimensionalmechanicalwave,v r
!, t
� �

= df r
!, t
� �

=dt =ωAcos k
!� r!−ωt + δ

 �

,

and the time-averaged kinetic energy per unit length therefore equals

λA2ω2 cos2 k
!� r!−ωt

 �.

2 = λA2ω2=4 where λ = ρ/A represents the mass per unit

length. The total energy, which is the sum of the potential and kinetic energy, is
conserved and coincides with the maximum kinetic energy λA2ω2/2.
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19.3 PLANAR ELECTROMAGNETIC WAVES

In a homogeneous medium, the Maxwell’s equations can be combined to generate the
electromagnetic wave equation according to

r! × r! × E
!
 �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
−∂B

!

∂t

= r! r! � E!

 �
|fflfflfflfflffl{zfflfflfflfflffl}

0

−r2E = −
∂

∂t
r! × B

!
= −μ

∂

∂t
r! × H

!

|fflfflffl{zfflfflffl}
∂D

!

∂t

= −με
∂2 E

!

∂t2
= −

1
c2
∂2 E

!

∂t2

ð19.3.1Þ

with a similar equation for H
!
. Here vacuum quantities are distinguished by a zero

subscript so that c= c0=
ffiffiffiffiffiffiffiffi
μrεr

p ≡ c0=n, where n =
ffiffiffiffiffiffiffiffi
εrμr

p
is termed the dielectric

constant with c0 the speed of light in free space. The plane wave solutions to these

equations for propagation in the wavevector direction k
!
are, where E

!
phasor and

H
!
phasor are complex,

E
!

r
!, t
� �

H
!

r
!, t
� �

( )
=Re

E
!
phasor

H
!
phasor

( )
ei k

!� r!−ωt
� �" #

ð19.3.2Þ

with wavenumber k = 2π=λ ≡
�� k!��= k0n so that λ = 2π/k = λ0/n. As, e.g.,

r! exp
�
iðk! � r!−ωtÞ�= i k! exp�iðk! � r!−ωtÞ� acting on Equation (19.3.2), r! and ∂/∂t

can be replaced by i k
!
and − iω, respectively. Accordingly, r! × E

!
= −∂B=∂t implies

i k! × E
!
= μ iω

 �

H
! ð19.3.3Þ

and ðk!,E! ,H!Þ, or equivalently, ðE! ,H! , k
!Þ form a right-handed coordinate system. For

μ = μ0,

Z =

��E!����H!��
volts=meter½ �

amperes=meter½ � =
ωμ

k
=
c0μ0
n

=
1
n

ffiffiffiffiffi
μ0
ε0

r
=
1
n

4π × 10−7

8:85 × 10−12

� �1=2
Ω =

337
n

Ω≡
Z0
n
Ω

ð19.3.4Þ

in which Z0≡ 337Ω is termed the free space impedance. As a result,

��B!�� = μ��H!��= ffiffiffiffiffi
με

p ��E!��=
��E!��
c

ð19.3.5Þ
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The energy density in an electromagnetic wave is given by

w=
1
2

E
! � D! + B

! � H!

 �

=
1
2

εE
!2 +

ffiffiffiffiffi
εμ

p
|ffl{zffl}
1=c

E
! �

ffiffiffi
ε

μ

r
E
!

0
B@

1
CA

= εE2 = ε Ephasor

�� ��2 cos2 k
!� r!−ωt + δphasor

 �

ð19.3.6Þ

resulting in an energy flux equal to the light velocity times the energy density.
This coincides with the Poynting vector, given by, for plane waves in media such

as lossless dielectrics in which E
!
and H

!
are in phase,

S
!
= E

!
× H

!
= =

ffiffiffi
ε

μ

r
E2êk =

εffiffiffiffiffi
εμ

p E2êk = cεE
2êk ð19.3.7Þ

The intensity is then defined as the time-averaged power transported across a unit

area surface perpendicular to the propagation direction per unit time (the last two

expressions again require the absence of a phase shift between E
!
and H

!
):

I = E
!
× H

!��� ���D E
=
1
2
Re E

!
phasor × H

! *
phasor


 �
= cεE2
� �

=
1
2
cε E

!
phasor

��� ���2 ð19.3.8Þ

The momentum density and flux then equal the energy density and flux divided by c

according to the discussion of Section 18.14, while the radiation pressure, defined as

the time-averaged force per unit area on a surface, equals the time average of themomen-

tum flux, I/c. This value ismultiplied by two if thewave is reflected rather than absorbed.

19.4 POLARIZATION

A solid medium typified by a flexible and compressible rod can be displaced in one
longitudinal and two orthogonal transverse polarization directions êi. Equation
(19.2.3) is then replaced by

f
!
x, tð Þ=

X3
m= 1

êm gright,m x−vtð Þ + gleft,m x + vtð Þ� � ð19.4.1Þ

Gases and liquids do not support transverse restoring forces, while for the electro-

magnetic D
!
and B

!
source fields in a homogeneous uncharged dielectric medium since

r! � D! = r! � B! = 0 implies k
! � D! = k

! � B! = 0 for each plane wave component, the
longitudinal polarization is instead absent.

Unpolarized light typically results from light emission by uncorrelated spatially
separated sources. The phase and the polarization of the sum of these individual fields
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vary rapidly and randomly in both time and space. However, if a collimated beam
from an unpolarized source is incident on a random configuration of small particles
such as dust, the electrons in the material are accelerated along the direction of the E

!

field, which is transverse to the direction of propagation. Hence, perpendicularly
scattered light is polarized in a direction perpendicular to both the plane defined by
the incident beam and the direction from the scatterers to the observer. Polarized
light can be extinguished by an electric field polarizer that contains long aligned
molecules that conduct along their length in the same manner as miniature wires.
The large currents that result induce resistive losses for the electric field
components parallel but not perpendicular to the molecular orientation. A mechanical
analogue is provided by a set of parallel rigid bars that however in contrast
transmit mechanical disturbances that are polarized along rather than perpendicular
to the bars.

Mathematically, an electromagnetic wave can be linearly, elliptically, or circularly
polarized. For the above wave, the x and y components are often written in terms of the

two-component Jones polarization vector P
!
as

E
!
=Re E

!��� ���P!ei kz−ωtð Þ
h i

, P
!
= eiδx

cosθ
sinθei δy −δxð Þ

� �
ð19.4.2Þ

Here, δy − δx = 0 corresponds to linear polarization; if θ = 45� and δy − δx = −π/2, the

polarization vector along, e.g., the z = 0 plane rotates with time in the negative

angular direction as seen from a point with z > 0 (the angular direction and therefore

the polarization state is however reversed if the electric field is instead represented as

E0 and is therefore termed left circularly polarized, while if δy − δx = π/2, the field is

right circularly polarized. Otherwise, the endpoint of the polarization vector

describes an elliptic path with time, and the field is said to be elliptically polarized.

A polarizer in the x–y plane with polarization axis along the x-direction

transforms a normally (perpendicularly) incident electric field with Jones vector

field P
!
= cosθexp iδxð Þ, sinθexp iδy

� �� �
into a transmitted field E

!
=Re½ jE! jêx cosθ

exp i kz−ðð ωt + δ0xÞÞ� and an unpolarized incident beam into an x-polarized field with

half the incident power.

19.5 SUPERPOSITION AND INTERFERENCE

From the linearity of the wave equation, the sum ftotal r
!, t
� �

= c1 f1 r!, t
� �

+ c2 f2 r!, t
� �

of

two solutions f1 r
!, t
� �

and f2 r
!, t
� �

describes a further solution. This superposition
principle, however, is often not readily apparent since waves are often observed by
energy-sensitive detectors. These record the square of the sum of the waves rather than
the sum of the amplitudes of each individual wave.
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Superimposing counterpropagating plane wave solutions according to

f1 r!, t
� �

=Re Aeiδe− ιωt eik
!� r!+ e− ik

!� r!
n oh i

= 2Acos ωt−δð Þcos k! � r! ð19.5.1Þ

yields a spatially invariant sinusoidal waveform with a time-varying amplitude. For
waves instead incident on two slits at (x, z) = (d/2, 0) and (−d/2, 0) from a coherent or
incoherent source at a large negative distance, (0, − jZsourcej) with jZsourcej � d, the
equal amplitude cylindrical waves emerging from the slits possess phases that vary
identically in time and are therefore coherent. With I0, the intensity of a single slit,
the intensity at (x, Z) for Z� x, λ is given by

I xð Þ= I0 e
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 + x−d

2ð Þ2
q

+ϕ0 + e
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 + x + d

2ð Þ2
q

+ϕ0

������
������
2

= I0 eiϕ0 eikZ 1 + x2 + d2=4−xd

Z2

� �12
+ eikZ 1 + x2 + d2=4 + xd

Z2

� �1
2

 !�����
�����
2

≈ I0 eiϕ0 + ik Z + x2 + d2=4
2Z

� �
e− ik

xd
2Z + eik

xd
2Z

� �����
����
2

= 4I0 cos2
kxd

2Z

� �

ð19.5.2Þ

For sources located at r!i emitting waves with identical temporal frequency ω
and polarization, the field amplitude at r! is given by, suppressing the polarization
vector,

f r
!, t
� �

=Re z1 + z2 + � � �+ zNð Þe− iωt� � ð19.5.3Þ

with

zi =Ai r!−r!i
�� ��� �

ei
�k � r

!
−r

!
ið Þ+ δi ð19.5.4Þ

In three dimensions, A(r)/ 1/r since the total radiated flux through any sphere
centered on the source point (the product of the energy density, which varies as
(A(r))2 with the surface area 4πr2) is constant. Summing the complex numbers zi
in Equation (19.5.3) is then equivalent to adding N vectors, commonly termed
phasors, in the complex plane, each of which points from the origin to one of
the zi. If two phasors, zi and zj, are proportional and similarly directed, constructive

interference, jztotj = jzij + jzjj, results yielding jztotj2 = jz1j2 + jz2j2 + 2jz1jjz2j, while if

these phasors are oppositely directed, the waves are 180� out of phase yielding

destructive interference for which jztotj = jzij − jzjj. Incoherent, unpolarized sources
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(e.g., sources with polarizations that vary rapidly and randomly with respect to each

other over the time scales of the measurement process) as well as orthogonally

polarized sources and sources with different frequencies do not interfere so that

jztotj2 = jz1j2 + jz2j2. For two equal frequency sources or antennas at ± êz a=2ð Þ with
phase difference φ, the field at r

! with r
!�� ��� a so that the 1/r dependence of γ can

be neglected at a polar angle θ = θ
k
!
,z!
is

γRe ei kêr � r
!
−a
2êzð Þ−ωt−φ

2ð Þ + ei kêr � r
!
+ a

2êzð Þ−ωt + φ
2ð Þh i

= γRe ei kr−ωtð Þ e− i
kacosθ

2 + φ
2ð Þ + ei kacosθ

2 + φ
2ð Þ
 �h i

= 2γ cos kr−ωtð Þcos kacosθ
2

+
φ

2

� � ð19.5.5Þ

The time-averaged power attains a maximum when the argument of the second cosine
function equals mπ (m = 0, 1,… ), which implies from k = 2π/λ

acosθ = m−
φ

2π


 �
λ ð19.5.6Þ

As Δl = a cos θ equals the length difference between the rays from the two sources to
the observation point, if the sources radiate in phase, for φ = 0, constructive interfer-
ence occurs when Δl =mλ. If instead Δl = (2m + 1)π, the contributions interfere
destructively, canceling the field.

For N equally spaced sources radiating in phase (φ = 0) on z = [−a/2, a/2],
Equation (19.5.5) is replaced by

γ0e− i
kacosθ

2

XN−1

m= 0

ei
kamcosθ
N−1 = γ0e− i

kacosθ
2

1−ei
kaN cosθ
N−1

1−ei
kacosθ
N−1

 !

= γ0e− i
kacosθ

2

ei
Nkacosθ
2 N−1ð Þ sin

kaN

2 N−1ð Þcosθ
� �

ei
kacosθ
2 N−1ð Þ sin

ka

2 N−1ð Þcosθ
� �

= γ0e− i
kacosθ

2

e
i kacosθ

2 + kacosθ
2 N−1ð Þ


 �
sin

kaN

2 N−1ð Þcosθ
� �

ei
kacosθ
2 N−1ð Þ sin

ka

2 N−1ð Þcosθ
� �

= γ0
sin

kaN

2 N−1ð Þcosθ
� �

sin
ka

2 N−1ð Þcosθ
� � ð19.5.7Þ
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with γ0 ≡ γ exp(i(kr − ωt)), which for N = 2 reproduces Equation (19.5.5)
after employing sin(2ε) = 2 sin ε cos ε with ε = (ka cos θ)/2. The maximum
relative field amplitude, Nγ, occurs when Χ ≡ π/2 − θ! 0 so that cos θ = sin Χ ≈ Χ.
The subsequent primary maximum is obtained when the denominator of the
above expression again approaches zero at a cos θ = (N − 1)λ. Between these,
N − 2 small amplitude subsidiary maxima are located at a cos θ =mλ with m = 1,
2,…, N − 2.

In the limit that N!∞, γ! 0 while Nγ = Γ,

γ0
sin

kaN

2 N−1ð Þ cosθ
� �

sin
ka

2 N−1ð Þ cosθ
� �! 2γ0N

sin
kacosθ

2

� �

kacosθ
= ei kr−ωtð Þ2Γ

sin
kacosθ

2

� �

kacosθ
ð19.5.8Þ

corresponding to the diffraction pattern of a wave of amplitude Γ normally incident
on a slit of width a consistent with Huygens’ principle, which regards each
point along a wavefront (a line of constant phase) at a given time as the source of
a circularly outward propagating wave. Subsequently, these waves interfere
constructively along the evolving wavefront. Equivalently, dividing the slit into
segments of length dz, each of which contributes an amplitude (Γ/a)dz, yields for
the diffracted field

ei kr−ωtð ÞΓ
a

ða
2

− a
2

eikzcosθdz = ei kr−ωtð ÞΓ
a

ei
kacosθ

2 −e− i
kacosθ

2

ik cosθ

= ei kr−ωtð Þ2Γ
sin

kacosθ
2

� �

kacosθ
ð19.5.9Þ

which possesses a single maximum at θ = π/2, zeros at cos θ = sin θ 0 =mλ/a with
θ 0 = 90 − θ the angle measured from the normal to the slit and subsidiary maxima
at sin θ 0 = (2m + 1)λ/a. The zeros are located at angles for which the rays from the
bottom and top of the slit differ by an integer number of wavelengths. That is, con-
sider a single planar wavefront normally incident on the slit and an outgoing plane
wave component traveling at θ 0 � π/2. The phase of the outgoing waves at the bot-
tom and top of the slit a long distance from the slit differs by kΔl = (2π/λ)a sin θ 0

where Δl is difference in distance traveled by the two waves. When θ 0 ≈ λ/a, the pha-
sor contributions from the different points in the slit are uniformly distributed over all
angles from 0 to 2π and therefore sum to zero. This implies Rayleigh’s criterion that
the diffraction patterns of light from two distant sources incident on the same aperture
are resolved if the angular separation between the two sources exceeds λ/a so that the
central maximum of one pattern lies outside the first minimum of the second.
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19.6 MULTIPOLE EXPANSION FOR RADIATING FIELDS

For distances r�D from a time-dependent charge and current density within a region
of size D and for emitted wavelengths, λ = c=f�D, since r!−r!0

�� ��≈r 1−2 r!� r!0=r2 +�
r02=r2Þ1=2≈r− êr � r!0,

J
!

r
!0, t−

r

c
+
êr � r!0
c

� �
≈ J

!
r
!0, t−

r

c


 �
+
_
J
!

r
!0, t−

r

c


 �êr � r!0
c

+ � � � ð19.6.1Þ

where
_
J
!
≡ ∂ J

!
=dtret,0 = ∂ J

!
=dt in which tret,0≡ t − r/c. Hence, the 1/r radiation terms in

the vector potential can be approximated by

A
!

r!, t
� �

=
μ0
4π

ð
ς

J
!

r
!0, t−

r
!
−r

!0j j
c


 �
r
!
−r

!0�� �� d3r0

=
μ0
4πr

ð
ς

J
!
r
!0, tret,0
� �

+
_
J
!
r
!0, tret,0
� � êr � r!0

c
+ � � �

� �
1 + r!� r!0

r2
+ � � �

� �
d3r0

≈
μ0
4πr

ð
ς
J
!
r
!0, tret,0
� �

d3r0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
electric dipole

+
μ0
4πr

ð
ς

_
J
!
r
!0, tret,0
� � êr � r!0

c
d3r0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
magnetic dipole and electric quadrupole

+ � � � ð19.6.2Þ

The first, leading, term above is associated with the electric dipolemoment since a net
current within a limited volume must redistribute the charges in direction of the
average current and thus alter the electric dipole moment. Mathematically, the current

continuity equation r! � J! = −∂ρ=∂t implies

r! � xm J
!
 �

=
X
l

∂

∂xl
xmJlð Þ=

X
l

δmlJl + xm
∂Jl
∂xl

� �
= Jm−xm

∂ρ

∂t
ð19.6.3Þ

Further,

ð
ς
r!0 � x0mJ

!
l r

!0, tret,0
� �
 �

d3r0 =
ð
S�ς

x0mJ
!
l r

!0, tret,0
� �
 �

� dS0 = 0 ð19.6.4Þ

since J
!
is localized to D and therefore vanishes on any S0 situated beyond D.

Accordingly,

A
!
electric dipole r!, t

� �
=

μ0
4πr

ð
ς
_ρ r

!0, tret,0
� �

x!0d3r0 =
μ0
4πr

_p
! tret,0ð Þ ð19.6.5Þ
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where p! is the electric dipole moment. Since for a function f(tret,0) of tret,0,r
!
f tret,0ð Þ=

êr∂rf tret,0ð Þ≈ − êr 1=cð Þ _f tret,0ð Þ, neglecting terms of order 1/r2 that are generated when

r! is applied to 1/r, with p
! oriented along the z-axis, êz = cosθêr − sinθêθ (since θ

opens downward), êr × êθ = êϕ, and p⊥ ≡ psinθr!,p!,

B
!
electric dipole r

!, t
� �

= r! × A
!
= −

1
c
êr ×

∂A
!

∂t
= −

μ0
4πrc

êr ×
€p
!
ret,0 = −

μ0€pret,0
4πrc

êr!× p! !|{z}
p
!= pêz

μ0€p⊥,ret,0
4πcr

êϕ

ð19.6.6Þ
Far from the sources,

r! × E
!
= − êr ×

1
c

∂ E
!

∂t
= −

∂ B
!

∂t
ð19.6.7Þ

Hence, êr,E
!
,B

!
 �
form a right-handed coordinate system with êr × E

!
= cB

!
so that

from êr × êθ = êϕ,

E
!
electric dipole = −cêr ×B

!
electric dipole = −

μ0
4πr

€p
!
⊥, ret,0êr × êϕ =

μ0
4πr

€p⊥,ret,0êθ ð19.6.8Þ

with the corresponding Poynting vector

S tð Þ= 1
μ0

E
!
× B

!
= êr

μ0
16π2c

sin2θ
r2

€p tret,0ð Þð Þ2 ð19.6.9Þ

which yields for the total power according to Equation (18.16.14)

Ptotal, electric dipole tð Þ=
ð
S
!� dA! =

2
3

� �
4πr2S=

μ0
6πc

€p tret,0ð Þð Þ2 ð19.6.10Þ

Equations (19.6.8) and (19.6.10) also follow from Equation (18.16.10) together
with Larmor’s formula, Equation (18.16.15), for the fields and power radiated by
an accelerating point charge with dipole moment p

! = qr!with respect to a fixed origin.

Example

In a center-fed linear electric dipole antenna, an AC source generates a current
I(t, z = 0) = I0 cosωt in a vertical wire with cross section A extending from z = 0
to z =D and a simultaneous current I(t, z = 0) = −I0 cosωt at z in a second,
oppositely directed wire from z = 0 to z = −D. If the wavelength of the radiation
is much larger than D, the current varies as I(t, z) = sign(z)(D − z)I0 cos (ωt)/D.

Since r! � J! = 1=Að ÞdI=dz= −∂ρ=∂t, the charge density in the two branches of
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the antenna after integration ρupper = −ρlower = I0 sin(ωt)/ωAD from which the dipole

moment
Ð
ςρ r!0
� �

r!0d3r0 = êz
ÐD
−D ρ r!0

� �
z0Adz0 = êz sin ωtð ÞI0D=ω, which as expected

is determined by the average separation between the positive and negative
charges in the wire. Equation (19.6.10) then yields for the total time-averaged
radiated power

Ptotal =
μ0
6πc

1
2
DωI0ð Þ2 ð19.6.11Þ

This result can also be derived directly from

A
!

r
!, t
� �

=
μ0
4π

ð
ς

J
!
r
!0, tretarded
� �

r
!
−r

!0 tretardedð Þ�� ��d3r0≈ μ0
4πr

ð
L
Idl

!0 =
μ0I0D

4πr
cosω t−

r

c


 �
êz ð19.6.12Þ

from which subsequently, with êz = êr cosθ− êθ sinθ,

B
!
= r! × A

!
= −

1
c
êr ×

∂A
!

∂t
= −1ð Þ3êϕ μ0

4πcr
I0Dωsinθ sinω t−

r

c


 �
ð19.6.13Þ

together with E
!
= −cêr × B

!
.

While electric dipole radiation occurs for any nonzero J
!
that results in a net

redistribution of charges and hence a time-varying electric dipole moment, a
time-independent current distribution generates a static nonradiating magnetic field.

Hence for magnetic dipole radiation
_
J
!6¼ 0. That is, if J

!
changes at t = 0 for a short

time interval Δt and then remains stationary in a new configuration, as for the
suddenly accelerated electric charge examined in Section 18.16, after a further
time t elapses, the magnetic field lines of the initial and modified magnetic field
distributions are similarly joined at a distance r = ct by angularly directed
magnetic field lines. The spatial displacement of the field lines of the t < 0 and
t >Δt distributions varies linearly with r, providing again the additional factor of r
that distinguishes radiated and static fields. As the form of the magnetic field from
a magnetic dipole is identical to that of the electric field of an electric dipole, while
the physical mechanism for the generation of the radiation field is identical, the
radiated field formulas differ only by constant factors and appropriate substitutions

of c B
!
for E

!
.

Mathematically, magnetic dipole radiation is associated with the antisymmetric
pseudovector components (cf. Eq. 5.5.7) of the second term in Equation (19.6.2).

Writing the tensor outer product _Jax
0
b = J

!�r
!0 as _Jax

0
b + _Jbx

0
a

� �
=2 + _Jax

0
b− _Jbx

0
a

� �
2

or equivalently
_
J
!�r

!0 + r!0� _
J
!

� �.
2 +

_
J
!�r

!0−r!0� _
J
!

� �.
2 and retaining only the anti-

symmetric term,
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Amagnetic dipole r
!, t
� �� �

a =
μ0
4πrc

êb
1
2

ð
ς

_Ja r
!0� �

x0b− _Jb r
!0� �

x0a
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

εabc
_
J
!
× x

!0
� �

c

d3r0 = −
μ0
4πrc

êr ×
_m
!


 �
a

ð19.6.14Þ
with m

! the magnetic dipole moment pseudovector from which

B
!
magnetic dipole =r! ×A

!
magnetic dipole =

μ0
4πrc2

êr × êr ×
€m!


 �
=
1
c
êr ×E

!
magnetic dipole

ð19.6.15Þ

(The symmetric term Jax0b + Jbx
0
a instead yields a four-lobed electric quadrupole radi-

ation pattern proportional to the quadrupole moment tensor Qij =
Ð
ς

�
3x0ix

0
j−r

02δij
�
d3r0

corresponding to the radiation pattern of an adjacent pair of center-fed linear antennas

driven with a 180� relative phase shift.) Accordingly, p!!m
!
=c,
�
E
!
,c B

! �
electric dipole !�

c
!
B, − E

! �
magnetic dipole transforms Equation (19.6.8) into Equation (19.6.15) while

leaving S
!
= E

!
× H

!
invariant and thus, e.g.,

Ptotal, magnetic dipole tð Þ = μ0
6πc3

€m⊥ tret,0ð Þð Þ2 ð19.6.16Þ

While electric and magnetic dipole and quadrupole radiation fields interfere spatially,
the integrated power is the sum of the individual powers.

19.7 PHASE AND GROUP VELOCITY

If the phase velocity vp(ω) = x/t =ω/k of a wave in a medium varies with frequency,
the propagation speed or group velocity of a pulse generally differs from the
phase velocity. To illustrate, superimposing two waves with slightly different wave-
vectors and therefore frequencies yields a modulation envelope that can be
interpreted as an infinite train of identical pulses superimposed on a rapidly varying
carrier wave:

E
!
=E

!
0Re ei k +Δkð Þz− ω+Δωð Þtð Þ + ei k−Δkð Þz− ω−Δωð Þtð Þ� �

= 2E
!
0Re ei kz−ωtð Þ cos Δkz−Δωtð Þ� �

= 2E
!
0 cos kz−ωtð Þcos Δkz−Δωtð Þ

ð19.7.1Þ

The point of zero phase of the wave envelope satisfies Δkz −Δωt = 0 so that in the
Δω,Δk! 0 limit, employing ω = vpk and k = 2π/λ so that dk/k = −dλ/λ:
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vg =
dω

dk
= vp + k

dvp
dk

= vp−λ
dvp
dλ

ð19.7.2Þ

Indeed, if the wavelengths of the two waves differ by Δλ while the mean wave
velocity is vp,

λ
dvp
dλ

=
λ

Δλ
� Δλ

dvp
dλ

� �
=

λ

Δλ
Δvp ð19.7.3Þ

Δvp corresponds to the relative distance over which the wave with wavelength λ +Δλ
travels with respect to the wave with λ in 1 s. If this distance equals Δλ, the point at
which the two-component waves interfere constructively and hence the wave
envelope is displaced by λ along − ê

k
!.

A frequency-dependent phase velocity induces pulse broadening or dispersion.
A localized pulse is a superposition of an infinite number of waves with different
wavevectors, each of which evolves in time with its associated phase velocity.
Frequencies that travel at higher and lower speeds, respectively, spread out the
leading and trailing edges of a propagating pulse. For a pulse width a with average
carrier wavevector k0, expanding ω in a Taylor series around k0 yields

ω kð Þ=ω0 k0ð Þ+ vg k0ð Þ k−k0ð Þ+ β k0ð Þ k−k0ð Þ2
2

+ � � � ð19.7.4Þ

so that vg k0ð Þ≡ ∂ω=∂kjk0 and vg(k) = vg(k0) + β(k0)(k − k0) for k ≈ k0. The dispersion
parameter is defined as

β k0ð Þ ≡ ∂2ω

∂k2

����
k0

=
∂vg
∂k

����
k0

D2

T

� �
ð19.7.5Þ

For an initial (near-Gaussian) pulse width a, since Δx(t = 0)Δk = aΔk ≥ 1/2 from the
properties of the Fourier transform or the Heisenberg uncertainty principle, at times
for which the pulse spreading far exceeds a, the pulse widthΔx(t) =Δvgt≈ βt/2a from
Equation (19.7.5).

19.8 MINIMUM TIME PRINCIPLE AND RAY OPTICS

Wave motion can be modeled classically by evolving rays, which are quasiplanar
wavefronts generated by a coherent line of sources with a far larger transverse spatial
extent than the wavelength and which interfere constructively along the ray path.
That is, according to Babinet’s principle, the field along a plane x = x0 results from
circular outgoing waves emitted by the field at each point along an adjacent
plane x = x0 − L. A ray is generated when these waves are in phase along x = x0 over
a distance � λ. In the λ! 0 limit, the width of such a beam can therefore be
negligible. The phase remains invariant to the lowest order for any small but
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continuous change along a ray trajectory so that waves propagating along all such
paths interfere coherently. Hence, a ray path between two points constitutes a local

extremum (maximum, minimum, or saddle point) of the phase or equivalently the

number of wavelengths. since the phase increment over a length dl of the ray path
is dϕ = kdl, for a ray between points A and B, if δ denotes any small perturbation of
this path,

δϕ = δ
ðB
A
kdl = 0 ð19.8.1Þ

In three-dimensional space, if the ray path is parameterized as r! wð Þ,

δ

ðB
A
kdl= k0δ

ðB
A
n r

!� �
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxð Þ2 + dyð Þ2 + dzð Þ2

q� �

= k0δ
ðB
A

n r
!� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dw

� �2
+

dy

dw

� �2
+

dz

dw

� �2s0
@

1
Adw

= k0δ
ðB
A
L r

!, _r!

 �

dw ð19.8.2Þ

with _r
!≡ dr

!
=dw and L

�
r
!, _r!
�
= n r

!� � ffiffiffiffiffi
_r
!2

q
. The Lagrangian equations for the above

problem are

d

dw

∂L

∂ _xi
=
∂L

∂xi
ð19.8.3Þ

and, after inserting L,

d

dw

n r!
� �
ffiffiffiffiffi
_r
!2

q _r
!

0
B@

1
CA=

ffiffiffiffiffi
_r
!2

q
r! n r

!� � ð19.8.4Þ

The ray equation is obtained by returning to the path length variable dl=

ffiffi
_r
!

q
2dw:

d

dl
n r

!� �dr!
dl

� �
= r! n r

!� � ð19.8.5Þ

19.9 REFRACTION AND SNELL’S LAW

At a planar interface between two dielectric media such that n = n1 for x < 0 and n = n2
for x > 0, a ray between a point at (x, z) = (−d1, 0) in medium 1 and a second point at
(d2, L) in medium 2 can be parameterized in terms of a single parameter Zwhere (0, Z)
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is the point at which the ray intersects the interface. The extremum condition of the
previous section then implies

δϕ= k0
d

dZ
n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 +Z

2
q

+ n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22 + L−Zð Þ2

q� �
= 0 ð19.9.1Þ

or

n1Zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 + Z

2
p −

n2 L−Zð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22 + L−Zð Þ2

q = 0 ð19.9.2Þ

Introducing the angle of incidence, θinc, between the ray and the perpendicular to the
interface between the two dielectric media yields Snell’s law

n1 sinθ1,inc = n2 sinθ2,inc ð19.9.3Þ

Snell’s law also follows from the continuity of the wave fronts on both sides of the
surface, which implies that the wavelength λk≡ λz, and thus, the wavevector compo-

nent parallel to the direction of the surface, kz = k
! � êz = kj jsinθinc = k0nsinθinc, must

be identical on both sides of the boundary, i.e.,

kz,1 =
2πn1
λ0

sinθ1,inc = kz,2 =
2πn2
λ0

sinθ2,inc ð19.9.4Þ

Alternatively, while the wavelength is λ1 = λ0/n1 below the interface and λ2 = λ0/n2
below the interface, the distance, λz, between successive wavefronts along the
interface must be equal so that λz,1 = λ1/cos(90 − θinc,1) = λ0/(n1 sin θinc,1) = λz,2 = λ0/
(n2 sin θinc,1).

For an electromagnetic wave incident from a higher refractive index medium, 1,
onto a second medium, 2, of lower refractive index at an angle of incidence smaller
than the critical angle defined by

sinθ1,critical inc =
n2
n1

ð19.9.5Þ

the direction of travel (e.g., of k
!
) in medium 2 is more nearly parallel to the interface.

As a consequence, the wavelengths along the interface coincide although the
wavelength λ2 = λ0/n2 exceeds λ1 = λ0/n1. However, at the critical angle, the wave
in medium 2 is parallel to the interface, while for θ1 > θ1,critical inc the wavefronts
cannot match along the interface. The phases of the wavefronts generated by the
incoming wave along the interface at different times then cancel destructively in
medium 2 in a manner analogous to the field decay away from the edge of a light
beam. Designating by x and z the coordinates perpendicular and parallel to
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the interface, respectively, since kz = kk = k0n1 sin θ1 in both media by continuity
while k2 = k2x,2 + k

2
z,2 = k

2
0n

2
2 in medium 2, k2x,2 = k

2
0n

2
2−k

2
z,2 = k

2
0n

2
2−k

2
z,1 = k

2
0n

2
2−

k20n
2
1 sin

2θinc,1 < 0, and hence,

E2 x,zð Þ= c1eikz,1z+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z,1 −k20n22

p
x− iωt

+ c2e
ik1,zz−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z,1 −k20n22

p
x− iωt ð19.9.6Þ

The constants c1 and c2 depend on the boundary conditions. If an incoming
plane wave approaches a lower index interface from below, c1 = 0 since the field
must approach zero at +∞. In contrast, both c1 and c2 differ from zero within a region
a1 < x < a2 between two higher index dielectric interfaces if electromagnetic waves are
incident on both interfaces.

19.10 LENSES

Since the lengths of all radial paths from the center to the edge of an empty, reflecting
sphere are identical, electromagnetic waves radiated by a source at the center of the
sphere experience equal phase shifts over these paths and hence interfere construc-
tively after a round trip. Therefore, all radiated power returns to the source point.
Additionally, since λf = v, where the frequency f is identical throughout space, the time
delay of a pulse along all rays with equal numbers of wavelengths is identical.
Therefore, the temporal shape of a pulse emitted at the source point is preserved after
reimaging. In the same manner, all power emitted by a source at one focus of an
ellipsoid propagates to the opposite focus without distortion.

A converging lens instead focuses light from an object point behind the lens onto an
image point in front of the lens through the reduction of the light wavelength in a
dielectric medium from λ to λ/n. In particular, the lens is expanded toward its center
so that the number of wavelengths accumulated by a ray passing through the lens from
the object to the image near itsoptical axis, which is the axis of symmetry perpendicular
to the lens, equals those associatedwith the longer paths traveled by rays incident on the
lens at off-center points. If (z, r) represent cylindrical coordinates with respect to the
center of the lens at (0, 0) and the optical axis, the distance traveled by a ray emitted
from a source point (−p, 0) with p > 0 through (0, r) to an image point (q, 0) equals

D rð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 + r2

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 + r2

p
≈p + q +

r2

2
1
p
+
1
q

� �
+ � � �≈D 0ð Þ+ r2

2
1
p
+
1
q

� �

ð19.10.1Þ
which corresponds to an additional (D(r) −D(0))/λ0 wavelengths relative to the
straight-line path through (0, 0). Since light propagating a distance Δz in a refractive
index medium acquires (n − 1)Δz/λ0 additional wavelengths compared to vacuum, a
lens centered at (0, 0) can equalize the number of wavelengths for all paths through a
thickness variation Δz = t(0) − t(r) with
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n−1ð ÞΔz= n−1ð Þ t 0ð Þ− t rð Þð Þ = r2

2
1
p
+
1
q

� �
≡

r2

2f
ð19.10.2Þ

leading to the thin lens equation

1
p
+
1
q
=
1
f

ð19.10.3Þ

in which t(r) = t(0) − gr2 and f = 1/(2g(n − 1)) is termed the focal length. Parallel rays

are generated by a point source at p =∞ and thus are focused at q = f, while rays

emitted at p = 2f are focused at an equal distance q = 2f. The thickness of a diverging
lens for which g < 0 instead increases away from the optical axis so that parallel
rays passing through the lens are defocused rather than focused. Thus, f < 0 in
Equation (19.10.3), implying for p > 0 that q < 0 so that the source object and its
(noninverted) virtual image are situated on the same side of the lens.

A lens canbe regardedas aprismwithavertexangle that varieswithdistance from the
optical axis.A ray invacuumincident at an incidenceangleθincident on a triangular prism,
where positive angles are directed away from the prism vertex, with refractive index n is
refracted according to Snell’s law into an angle θ1 = arcsin(sin θincident/n) inside the
prism. If the opening angle of the prism is θprism, the ray is incident on the second output
face of the prism at an angle θ1 − θprism leading to θouput = arcsin(n sin(θ1 − θprism)) with
respect to the normal to the output face.As the refractive indexof glass is greater for blue
light than for red light, as a result ofmaterial dispersion, blue light is refractedmore than
red light and emerges from the prism at a larger angle with respect to the direction of
the incident beam. While this effect is often utilized in spectroscopy to separate the
frequency components of a light beam, in lenses, the frequency-dependent focal length
yields a chromatic distortion of images.

Examples

If a source is situated at a point (−p, R) with p > f behind a converging lens and
away from the optical axis, one of its emitted rays describes a straight line through
the center of the lens. Since the image point is located a distance q on the
opposite side of the lens, by similar triangles, the height of this “real” image equals
R0 = −(q/p)R and is therefore inverted and magnified byM = |q/p|. Objects at large
distances (p!∞ with L finite) are focused to single point on the optical axis, and
thus,M = 0, while for p = q = 2f,M = 1. If the source object is positioned a distance
p < f from the lens, q < 0 from Equation (19.10.2), and the image and the source
are located on the same side of the lens. This yields a noninverted, virtual
image for which M!∞ as p! 0. Thus, to magnify an object with a single lens,
the object is situated such that its virtual image, viewed from the opposing side of
the lens, appears at a standard viewing distance, typically qview = −0.25 m. From
Equation (19.10.3), p = fq/(q − f) implying M = |(qview − f )/f | = 0.25/f + 1.

In a two-lens microscope, an object is placed a distance p1 slightly outside the
focal length of a convergent objective lens to generate a real image on the opposite
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side of the lens with Mobjective = j fobjective=(p1 − fobjective)j � 1. This image is
then positioned inside the focal length of a second convergent lens or eyepiece
that provides a further magnification M2 = |q2/p2| = 0.25/feyepiece + 1. In a two-lens
telescope, the initial object is far beyond the focal distance of the objective lens so
that q1 ≈ fobjective yielding a real image much smaller than the original object.
For the eyepiece, p2≈ feyepiece with p2 < feyepiece. The final virtual image is
then situated a large distance from the front of the telescope similarly to the
object distance. Accordingly, − q2 ≈ p1 ≈∞ resulting in a total magnification
q1=p1ð Þ q2=p2ð Þj j≈q1=p2≈ fobjective=feyepiece.

19.11 MECHANICAL REFLECTION

Both the spatial derivative and the displacement of a wave normally incident on an
interface between two dissimilar materials, 1 and 2, are continuous (as these can be
obtained from integrating the second derivative terms appearing in the wave
equation). Because the velocity and displacement of a sinusoidal wave are propor-
tional, the continuity requirement is typically recast as the equality of the impedance
ratio Z between the velocity and the displacement, which is independent of the over-
all wave amplitude, on both sides of the interface. For a single forward propagating
wave, Z1 = k1, while Z2 = k2 in the two materials. Hence, the incoming wave can only
be transmitted without distortion if k1 = k2. Otherwise, a reflected wave is addition-
ally present with reversed velocity relative to the displacement such that the addition
of incident and reflected wave yields the same effective impedance at the boundary
as the single transmitted wave. For a boundary at x = 0 with a wave described by the
real part of

f x, tð Þ=
A ei k1x−ωtð Þ +Re− i k1x +ωtð Þ� �

x < 0

ATei k2x−ωtð Þ x > 0

(
ð19.11.1Þ

the equality of impedances, namely,

1
f

∂f

∂x

����
0−
= ik1

A 1−Rð Þ
A 1 +Rð Þ =

1
f

∂f

∂x

����
0+

= ik2 ð19.11.2Þ

yields the amplitude reflection and transmission coefficients, where T = 1 + R by the
continuity of f,

R=
k1−k2
k1 + k2

=
Z1−Z2
Z1 +Z2

T = 1+R=
2k1

k1 + k2
=

2Z1
Z1 + Z2

ð19.11.3Þ

301MECHANICAL REFLECTION



For zero, Dirichlet, boundary conditions, f(0, t) = 0 for all t, associated with an
impenetrable barrier such as a fixed end of a string or the closed end of a pipe. This
can be implemented by setting k2 = i∞ in Equation (19.11.1) and hence, R = −1
in Equation (19.11.3), suppressing the transmitted field. If an initial waveform
f(x, t = 0) is incident from x < 0 on such a boundary, its subsequent evolution is iden-
tical to that obtained in the region x < 0 without the boundary but in the presence of a
fictitious left-propagating inverted wave for x > 0 defined by − f(−x, t = 0). Free,
Neumann, boundary conditions at x = 0 instead require df(x, t)=dxjx = 0 = 0. These
are typified by a rope terminated by a ring sliding on a vertical pole without a trans-
verse frictional restoring force or by a compression wave at the open end of a tube of
constant cross-sectional area where from Equation (19.1.2):

0 = p−patmospheric =Δp = −Kadiabatic
ΔV
V

= −Kadiabatic
Δl
l
= −Kadiabatic

df xð Þ
dx

ð19.11.4Þ

The evolution of an incident wave from x < 0 reflecting off a free end at x = 0 is
identical to that obtained in the absence of the boundary by initially including a non-
inverted left-propagating wave f(−x, t = 0) over the expanded region [−∞,∞]. Finally,
waveforms in, e.g., a tube bent into a ring with a circumference L much greater than
the tube width are subject to periodic boundary conditions

f xð Þ= f x +Lð Þ
df xð Þ
dx

����
x

=
df xð Þ
dx

����
x + L

ð19.11.5Þ

In a one-dimensional medium with stationary boundaries at x = 0, L, a resonant
waveform or mode satisfies the boundary conditions at the two endpoints and does
not change form with time if the medium and boundary conditions are time
independent. For zero boundary conditions at both boundaries, a mode with n − 1
nodes (zeros) between zero and L is given by sin(2πx/λn)sin(2πfnt + δn) with wave-
lengths λn = 2L/n, n = 1, 2,… and frequencies fn = nv/2L from λf = v. For a zero
boundary condition at x = 0 and a free boundary condition at x = L, the wavelengths
instead equal λn = 4L/(2n − 1), n = 1, 2,…, while for periodic boundary conditions, the
modes include both sin(2πx/λn)sin(2πfnt + δn) and cos(2πx/λn)sin(2πfnt + δn) with λn =
L/n, n = 1, 2,…. The number of modes within a frequency intervalΔf is approximated
by 2LΔf=v in all three cases.

19.12 DOPPLER EFFECT AND SHOCK WAVES

For waves propagating from a source to a detector, the recorded frequency depends on
the motion of both the detector and source. For example, if the velocity of the source
toward the detector equals the wave velocity, all waves arrive simultaneously
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resulting in a zero observed wavelength and thus infinite frequency. In contrast, if the
detector moves toward the source at the wave velocity, the apparent wave velocity
doubles, and the observed wavelength thus decreases by a factor of two. Explicitly,
an observer moving with a velocity vobserver toward a source that emits waves of
length λ and velocity χ such that fsource = χ/λ intercepts waves approaching at a speed
v = χ + vobserver. The time required for the observer to pass one wavelength, or period,
which is the inverse of the observed frequency, is then (since fλ = λ/T = χ)

Tobserver =
1

fobserver
=
λ

v
=

λ

χ + vobserver
=

1
fsource

χ

χ + vobserver
ð19.12.1Þ

If the source approaches the observer at vsource, the source moves a distance
vsourceTsource in one wave period, Tsource, so that the wavelength detected by
the observer is λobserver = λsource − vsourceTsource yielding a detected frequency

fobserver =
χ

λobserver
=

χ

χTsource−vsourceTsource
= fsource

χ

χ−vsource
ð19.12.2Þ

When neither the source nor the observer is at rest, the modified frequency associated
with the observer motion is given by Equation (19.12.1). However, from
Equation (19.12.2), the frequency fsource in this equation is additionally altered by
the source motion. Hence,

fobserver = fsource
χ + vobserver
χ−vsource

ð19.12.3Þ

The detected frequency always exceeds the source frequency fsource for approaching
motion and is less than fsource for receding motion as easily verified by listening to a
passing siren.

A source with v > χ emits spherical waves that propagate a distance χt from the
location x = vsourcet at which they were emitted. A constant phase front termed a shock
wave is therefore generated that describes a cone with opening angle θ where

sinθ =
χt

vsourcet
=

χ

vsource
ð19.12.4Þ

For a particle passing through a dielectric medium in which the speed of light is slower
than the particle velocity, the corresponding light pulse is termed Cerenkov radiation.

19.13 WAVES IN PERIODIC MEDIA

If successive phase fronts of a plane wave in a periodic medium coincide with the
periodicity of the medium, waves scattered from equivalent spatial regions superim-
pose coherently in certain directions leading to refraction. The analysis of this effect is
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generally performed slightly differently for forward and backward scattering. In for-
ward scattering, consider a wave exp(k sin θx + k cos θz) incident on successive planes
of scatters (each of which can consist of a distribution of point-like scatters or can
possess a nonzero thickness in the x-direction) located along planes x = xi with
xi = nΛ, n =… − 2, − 1, 0, 1, 2,…. As is evident by drawing two rays reflecting from
successive planes at the points (0, 0) and (0,Λ), for which the additional distance
traveled by the lower ray Δl = 2Λ sin θ, constructive interference between plans
occurs when Δl satisfies the Bragg reflection condition

Δl= 2Λsinθ =mλ ð19.13.1Þ

(a common error is to omit the factor of 2). The refracted beam then forms an angle
of 2θ with respect to the incoming beam. Equivalently, refraction occurs when the
additional phase increment that the wave experiences in reflecting from the lower
plane equals an integer multiple of 2π:

Δϕ =ΔkxΛ = 2k sinθΛ =
4πΛ
λ

sinθ = 2πm ð19.13.2Þ

For a plane wave incident at an incidence angle θinc on identical planes of
scatters spaced a distance Λ apart in the z-direction, since θinc + θ = π/2, sin θ is
replaced by sin(π/2 − θinc) = cos θinc above and the Bragg condition is generally
instead written

2Λcosθinc =mλ ð19.13.3Þ

Therefore, if Λ =mλ/2, a normally incident wave is reflected.

19.14 CONDUCTING MEDIA

In a homogeneous linear conducting media in which ε, μ, and σ are independent of

position and the current density and electric field are related by J
!
= σ E

!
, localized

charges or electric fields within the conductor generate large currents. These displace
charges to the surface after a characteristic relaxation time, τ, which can be determined
from the continuity equation

∂ρ qð Þ
free

∂t
= − r! � J!= −σr! � E! = −

σ

ε
r! � D! = −

σ

ε
ρ qð Þ
free ð19.14.1Þ

where ρ qð Þ
free is the charge density or charge per unit volume so that

ρ qð Þ
free tð Þ= e−σt

ε ρ qð Þ
free 0ð Þ≡ e−

t
τρ qð Þ

free 0ð Þ ð19.14.2Þ

yielding τ = ε/σ = ερ with ρ = 1/σ the resistivity.
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The electric field in a linear conducting medium obeys the wave equation

r! × r! × E
!
 �

= r! r! � E!

 �
|fflfflfflfflffl{zfflfflfflfflffl}

0

−r2E = −
∂

∂t
r! × B

!
 �

= −μ
∂

∂t
r! × H

!
 �
= −με

∂2 E
!

∂t2
−μσ

∂ E
!

∂t
ð19.14.3Þ

with a similar equation for B
!
. Hence, for a plane wave for which E

!
,B

!
 �
=

Re E
!
0,B

!
0


 �
ei k

!� r!−ωt
� �� �

,

k2 =
ω2

c2
+ iμσω ð19.14.4Þ

with c2 = 1/εμ. Defining k0 =ω/c0 for a normally incident wave with k
!
= kêz where the

conductor occupies the half space z > 0,

E
!

B
!

( )
=Re

E
!
0

B
!
0

( )
ei k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εrμr 1 + i σ

ωεð Þð Þp
z−ωt

� �" #
ð19.14.5Þ

inside the conductor. Comparing with the equivalent expression E0 exp(i(k0nz −ωt))
for a plane wave in a uniform dielectric medium with σ = 0 yields an effective relative
dielectric permittivity

εr, effective = n
2
effective = εrμr 1 +

iσ

ωε

� �
ð19.14.6Þ

For σ�ωε, the electric and magnetic fields are nearly in phase as in vacuum,
while the decay length or skin depth dskin = 1/Im(k0n), which is the distance over
which the fields fall to 1/e of their value, is large. The attenuation is governed by
the distance the field travels within a carrier relaxation time and is thus approximately
frequency independent if σ does not vary with frequency since (where the resistivity

ρ = 1/σ[ΩD] and the impedance Z =
ffiffiffiffiffiffiffiffi
μ=ε

p
Ω½ �)

dskin = Im
ω

c
1 + i

σ

ωε


 �1
2

� �� �−1
≈ Im

ω

c
1 + i

σ

2ωε
+ � � �


 �
 �h i−1

≈
2cε
σ

=
2
σ

ε

μ

� �1
2

=
2ρ
Z

= 2cτ ð19.14.7Þ

For low frequencies, σ�ωε, the large impedance discontinuity at the
boundary results in a rapid attenuation of the field below the surface of the
conductor with
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dskin = lim
ω!0

Im
ω

c
1 + i

σ

ωε


 �1
2

� �� �−1
=

ω

cω .

ffiffiffiffiffi
εμ

p

0
B@

1
CA σωμð Þ12Im

ffiffi
i

p
|{z}

eπi=4 = 1+ iffiffi
2

p

2
664

3
775

−1

=
2

σωμ

� �1
2

ð19.14.8Þ

Further from k
!
×E

!
0 =ωB0 so that êk ×E0 = c0=neffectiveð ÞB0, the, fields are 45� out of

phase. For 60 Hz electric current in copper, for which σ ≈ 106(Ω - cm)− 1, dskin≈ 1 cm,
which corresponds to the largest dimension of wires typically employed at this fre-
quency. For a microwave signal of frequency 1MHz (106 Hz), dskin is reduced by

a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
106=60

q
≈102, while skin depths of microns are associated with signal

frequencies in the gigahertz (1 GHz = 109 Hz) region matching the lithographically
generated wire sizes of integrated circuits.

19.15 DIELECTRIC MEDIA

In dielectric (insulating) materials, electrons do not move between atomic sites in
response to moderate forces. However, an applied field polarizes the individual atoms,
generating a bound current. Approximating the electron motion by the response of a
damped harmonic oscillator to the Lorentz force of the oscillating electric field yields
for the electron displacement x(t)

m
d2x

dt2
+mγ

dx

dt
+ω2

0x =Re qE0e
− iωt

� � ð19.15.1Þ

which is solved after introducing x(t) = Re(x0 exp(−iωt)) by

x =Re
qE0

m ω2
0−ω

2− iγω
� �e− iωt

 !
ð19.15.2Þ

The current density is then, suppressing Re,

J = nelectronqv=
− iωnelectronq2

m ω2
0−ω

2− iγω
� �E0e

− iωt = σE ð19.15.3Þ

In vacuum with εr = μr = 1 in Equation (19.14.6),

εr ωð Þ= n2 = 1 + q2nelectron
mε0 ω2

0−ω
2− iγω

� � ð19.15.4Þ
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as also follows from the polarization P
!
= ε0χ E

!
= nelectron d

!
with d

!
= q x!and εr = 1 + χ.

For χ � 1,

ffiffiffiffi
εr

p
= nR + inI = 1 +

q2nelectron
2mε0

ω2
0−ω

2 + iγω

ω2
0−ω

2
� �2

+ γ2ω2
ð19.15.5Þ

The power in a plane wave propagating in the z-direction dissipates as

P zð Þ = e−αz = egz = e−2kI z = e−
2ωnI
c0

z ð19.15.6Þ

where α and g with α = −g are termed loss and gain coefficients, respectively. The
loss coefficient reaches a maximum near the resonance at ω =ω0, while the real part
of the refractive index increases with frequency and therefore decreases with wave-
length (since fλ = c) except for |ω −ω0|≈ γ. Accordingly, a decreasing functional
dependence of nR(λ) on λ, as evident in the smaller refraction of large wavelength
red light by a glass prism compared to blue light, is termed normal as opposed to
anomalous dispersion.

19.16 REFLECTION AND TRANSMISSION

At an interface between two dielectrics, the absence of surface currents insures the

continuity of H
!
parallel to the surface, while surface charge layers generate a discon-

tinuity in the perpendicular but not the parallel electric field component
(cf. Eqs. 18.6.1 and 18.6.2). For a planar incoming wave normally incident on the

interface the impedance ratio Z = E
!��� ���. H

!��� ���= ffiffiffiffiffiffiffiffi
μ=ε

p
differs in the two media; conse-

quently, these boundary conditions cannot both be fulfilled if only a forward traveling

wave is present. However, since E
!
,B

!
, k
!
 �

form a right-handed coordinate system and

k
!
reverses direction upon reflection, the magnetic fields of backward and forward

traveling waves are oppositely oriented relative to the electric field. Accordingly,
if both a reflected wave and an incident wave are present, any ratio of electric to
magnetic fields can exist at the boundary.

For an interface along the z = 0 plane, if ê
k
! and E

!
are oriented along êz and êx,

respectively, from ê
k
!× E

!
= ZH

!
, the incident and transmitted H

!
fields are in the

+ êy direction for positive Ex, while the reflected H
!

field is directed along − êy,

i.e., Ex = ± ZHy, where the upper sign applies to the incident and transmitted

field and the lower sign to the reflected field. Hence, from the boundary
conditions at the interface, where the second and fourth lines are obtained by
taking the cross product of êz with the left-hand side of the first and third lines,
respectively,

307REFLECTION AND TRANSMISSION



E
!
k, incident +E

!
k, reflected =E

!
k, transmitted ) Ex, incident +Ex, reflected =Ex, transmitted

) Z1 Hy, incident−Hy, reflected
� �

= Z2Hy, transmitted

H
!
k, incident +H

!
k, reflected =H

!
k, transmitted )Hy, incident +Hy, reflected =Hy, transmitted

) 1
Z1

Ex, incident−Ex, reflectedð Þ = 1
Z2

Ex, transmitted

ð19.16.1Þ

For μ1 = μ2 = μ0, the impedance Zm =
ffiffiffiffiffiffiffiffiffiffi
μ=εm

p
,m = 1,2. Eliminating Ex,transmitted from

the first and last equations above yields Z2(Ex,incident − Ex,reflected) = Z1(Ex,incident +
Ex,reflected). Since (a − b)/(a + b) = c/d implies a − b = κc and a + b = κd from which
a = κ(c + d)/2 and b = κ(d − c)/2 yielding finally (d − c)/(d + c) = b/a (the same result
is obtained if Hy,transmitted is instead eliminated from the second and third equations
of Eq. (19.16.1)):

R=
Ex, reflected

Ex, incident
= − Z1

Z1
Hy, reflected

Hy, incident
=
Z2−Z1
Z2 +Z1

=
n1−n2
n1 + n2

ð19.16.2Þ

where R is the amplitude reflection coefficient. Observe that E
!
reverses direction upon

reflection if n2 > n1. The amplitude transmission coefficient is then, with T = 1 + R,

T ≡
Ex, transmitted

Ex, incident
= 1 +

Ex, reflected

Ex, incident
= 1 +R=

2n1
n1 + n2

=
Z2Hy, transmitted

Z1Hy, incident
=
n1Hy, transmitted

n2Hy, incident

ð19.16.3Þ

The corresponding intensity reflection and transmission factors, where the intensity is

given by the Poynting vector S
!
= E

!
× H

!
=E2=Z/ nE2 , are given by

Rintensity =
Sreflected
Sincident

=
n1−n2
n1 + n2

� �2

Tintensity =
Stransmitted

Sincident
=
n2
n1

2n1
n1 + n2

� �2
=

4n1n2
n1 + n2ð Þ2 = 1−Rintensity

ð19.16.4Þ

The impedance of a conducting layer, where εeffective = ε0 n2effective,

Z =
E

H

����
���� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

εeffectivej j
r

=
μ

ε 1 +
iσ

ωε

����
����

0
BB@

1
CCA

1
2

= cμ 1 +
σ

ωε


 �2� �−1
2

= cμ 1 +
μσc2

ω

� �2� �−1
2

ð19.16.5Þ
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approaches zero as σ/ωε!∞. From R = (Z2 − Z1)/(Z1 + Z2), the direction of the elec-
tric field therefore reverses upon reflection from a conducting plane while that of the

magnetic field is preserved since E
!
× B

!
is directed along k

!
, consistent with both

the absence of internal electric fields and the zero resistance to the formation of surface
currents in a conductor that physically correspond to zero (Dirichlet) and free
(Neumann) boundary conditions, respectively.

If the direction of travel (the wavevector) of an incoming plane wave describes an
angle of incidence, θincidence, with respect to the normal to the dielectric interface, only

twopolarization states of the incident field are preserved upon reflection (with differing

reflection coefficients), as can be demonstrated from symmetry arguments. These are
termed transverse electric (TE) and transverse magnetic (TM) fields for which, respec-
tively, the electric field and the magnetic field are perpendicular to the plane of inci-

dence that contains both the incident and reflected wavevectors. Any other incident

field polarization can be written as a linear combination of the TE and TM solutions

and will consequently be altered upon reflection.
For TE polarization, Hy in the third and fourth equations of Equation (19.16.1) is

replaced by the component of H
!
along the surface, Hk =Hy cos θincidence. This corre-

sponds to replacing Zm in the subsequent derivation by Zm/cos θm or equivalently nm
by nm cos θm yielding

RTE =
Ereflected

Eincident
=
n1 cosθ1−n2 cosθ2
n1 cosθ1 + n2 cosθ2

= −
Hreflected

Hincident

TTE =
Etransmitted

Eincident
= 1 +R=

2n1 cosθ1
n1 cosθ1 + n2 cosθ2

=
Z2Htransmitted

Z1Hincident
=
n1Htransmitted

n2Hincident

ð19.16.6Þ

Regarding TM polarization, illustrated in Figure 19.1, Ex in the first and second
equations is replaced by Ex cos θ. This is equivalent to substituting Zm cos θm for
Zm, or equivalently nm/cos θm for nm in deriving the reflection coefficient from the
second and third lines of Equation (19.16.1). Consequently, Equation (19.16.2) is
modified according to

RTM ≡
Ereflected

Eincident
=

n1
cosθ1

−
n2

cosθ2
n1

cosθ1
+

n2
cosθ2

=
n1 cosθ2−n2 cosθ1
n1 cosθ2 + n2 cosθ1

= −
Hreflected

Hincident

TTM ≡
Etransmitted

Eincident
=

cosθ1
cosθ2

� �
1 +Rð Þ = cosθ1

cosθ2

2n1 cosθ2
n1 cosθ2 + n2 cosθ1

� �

=
Z2
Z1

Htransmitted

Hincident
=
n1
n2

Htransmitted

Hincident
ð19.16.7Þ
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FromSnell’s law and, e.g., 2 sin a cos b = sin(a + b) + sin(a − b),RTM can be rewritten as

RTM =

n1
n2

cosθ2− cosθ1

n1
n2

cosθ2 + cosθ1
=
sinθ2 cosθ2− sinθ1 cosθ1
sinθ2 cosθ2 + sinθ1 cosθ1

=
sin2θ2− sin2θ1
sin2θ2 + sin2θ1

=
2sin θ2, −θ1ð Þcos θ2, + θ1ð Þ
2sin θ2 + θ1ð Þcos θ2−θ1ð Þ =

tan θ2−θ1ð Þ
tan θ2 + θ1ð Þ ð19.16.8Þ

At the Brewster angle θ1,Brewster + θ2,Brewster = π/2, the denominator of the last line of
the above equation becomes infinite, and hence, RTM vanishes (this can be seen
directly by noting that the numerator of the first expression for RTM equals zero
when n1 cos θ2 = n2 cos θ1, which after multiplying by sin θ1 sin θ2 and employing
Snell’s law becomes sin 2θ2 = sin 2θ1 with a nontrivial solution 2θ1,Brewster = 180 −
2θ2,Brewster). From Snell’s law,

n1 sinθ1,Brewster = n2 sinθ2,Brewster = n2 sin
π

2
−θ1,Brewster


 �

= n2 cosθ1,Brewster

tanθ1,Brewster =
n2
n1

ð19.16.9Þ

At this angle, the transmitted and reflected wave directions are perpendicular. Hence,
a TM incoming field induces electron motion at the surface perpendicular to the

H

H

n1

n2

H

E

E

E

θincident

θrefracted

θrefracted

FIGURE 19.1 Refraction at a dielectric interface for TM polarization.

310 WAVE MOTION



direction of the transmitted radiation. Since however the radiation pattern of an oscil-
lating dipole vanishes in the direction perpendicular to the direction of oscillation, the
reflected wave vanishes. Accordingly, only the TE-polarized component of an incom-
ing beam is reflected.

19.17 DIFFRACTION

If the effect of polarization on the diffraction or scattering from an aperture is
neglected, the scalar wave (Helmholtz) equation for a single monochromatic electric
or magnetic field component

r2 + k2
� �

ϕ = 0 ð19.17.1Þ

can be employed in place of the full Maxwell’s equations. The field generated along a
plane at z = Z from a pattern ϕ(x, y, z = 0) is then most simply obtained by integrating

γ exp k
!� r!−ωt

 �

, where γ is an as yet undetermined constant, over all points in this

pattern. Since in the Fresnel approximation, where primed and unprimed quantities
are evaluated at z = 0 and z = Z, respectively,

k
! � r! = k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ+ Z2

q
≈kZ 1 +

x−x0ð Þ2 + y−y0ð Þ2
2Z

 !
ð19.17.2Þ

and consequently

ϕ x,y,Zð Þ= γei kZ−ωtð Þ
ð∞
−∞

ð∞
−∞

ϕ x0,y0,z = 0ð Þei k2Z x−x0ð Þ2 + y−y0ð Þ2ð Þdx0dy0 ð19.17.3Þ

To determine the value of γ, observe that for ϕ(x, y, z = 0) = 1, the field for z > 0 is
given by exp(i(kz −ωt)). Hence, considering the point ϕ(0, 0, Z),

1
γ
=
ð∞
−∞

ð∞
−∞

ei
k
2Z x02 + y02ð Þ dx0dy0|fflffl{zfflffl}

x0 ,y0ð Þ=
ffiffiffiffi
2iZ
k

p
x00,y00ð Þ

=
2iZ
k

ð∞
−∞

e−y
002
dy00
ð∞
−∞

e−x
002
dx00 =

2iπZ
k

= iλZ

ð19.17.4Þ

In the Fraunhofer diffraction far-field limit for which Z� x0, y0, (x − x0)2≈ x2 − 2xx0,
(y − y0)2 ≈ y2 − 2yy0 leading to

ϕ x,y,Zð Þ= −
i

λZ
ei kZ−ωtð Þeik

x2 + y2

2Z

ð∞
−∞

ð∞
−∞

ϕ x0,y0,z= 0ð Þe− i kZ xx0 + yy0ð Þdx0dy0 ð19.17.5Þ

Hence, in this limit, apart from a phase factor, the far field is given by the Fourier
transform of the near field, indicating that each transverse Fourier component of
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ϕ(x0, y0, z = 0) propagates at a unique angle with respect to the z-axis and hence inter-
sects the z = Z plane at a single position with the contributions of higher transverse
frequencies situated further from the optical axis, x = y = 0.

Diffraction can also be analyzed with the Green’s theorem, Equation (8.4.5). For
an aperture cut into an opaque screen at z0 = 0, for dS

!
is directed away from the

observation point at r! a large positive distance from the aperture

ϕ r
!� �= −

þ
aperture

G r!,r!0
� �

ê
dS

! � r!0ϕ−ϕê
dS

! � r!0G r!,r!0� ��dS0h
ð19.17.6Þ

where in three dimensions The Green’s function is given by

G r!,r!0
� �

= −
eik r

!
−r

!0j j
4π r

!
−r

!0�� �� ð19.17.7Þ

since for r!0 = 0. The Green’s function must satisfy (1/r)d2/dr2(rG(r)) + k2G(r) = δ(r),
which is solved byG(r)/ exp(ikr)/r outside the singularity and must further approach
1/4πr as r! 0 where exp(ikr), and hence, the k2G(r) term in the differential equation
for Green’s function can be neglected. If the field equals ϕ r

!� � inside the aperture and
zero outside for large r, the 1/r2 terms can be neglected and for a plane wave incoming

field (dS
!
is in the − êz direction over the aperture and r!0 r!−r!0

�� ��= −r!0 r!−r!0
�� ��)

ϕ r
!� �≈ ik

4π

ð
aperture

eik r
!
−r

!0j j
r
!
−r

!0�� �� êz + er!−r!0ð Þ � ê
dS

!eikzdS0
" #

z0 = 0

ð19.17.8Þ

where θ is the angle to the observation point measured from the z-axis (the presence
of the additional factor 1 + cos θ in the above integral compared to the previous der-
ivation results from the smaller number of approximations intrinsic in the formalism).

If r is far greater than the aperture width, r
!
−r

!0�� ��≈r 1−2 r!� r!0=r2 + � � �� �1=2≈
r− r

! � r!0=r leading to the Fraunhofer limit

ϕ r
!� �≈ − i

2λr
1 + cosθð Þei kr−ωtð Þ

ð
aperture

ϕ r
!0� �

e− ikêr � r
!0
dS0

≈
− i

2λr
1 + cosθð Þei kr−ωtð Þ

ð
aperture

ϕ x0,y0,z= 0ð Þe− ikZ xx0 + yy0ð Þdx0dy0 ð19.17.9Þ

Babinet’s principle states that if an obstacle possesses the same shape as the aperture,
summing the fields generated from scattering from an obstacle and from the aperture
yields an unscattered field. The radiation pattern generated by the obstacle is therefore
the negative of that of its aperture, implying equal cross sections (effective areas) in
the two cases. The absorption cross section of a perfectly absorbing disk therefore
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equals its elastic (nonabsorbing) cross section, yielding a total cross section, σtotal,
equal to twice its area, i.e., 2A. The optical theorem, which can be generalized to
partially absorbing targets, is obtained from the forward scattering amplitude. If A
denotes the area of the black (absorbing) disk, from Equation (19.17.9) for a plane
wave incident field, c exp(i(kz − ωt)) and f(θ = 0) is the forward scattering amplitude
as defined below

Im f θ = 0ð Þð Þ≡ Im r
amplitude of scattered field for θ = 0 at z
amplitude of unscattered incident field at z

� �

= Im

− ic

λ
ei kz−ωtð ÞA

cei kz−ωtð Þ

0
B@

1
CA

= −
σtotal
2λ

ð19.17.10Þ

19.18 WAVEGUIDES AND CAVITIES

While the intensity of a localized spherically radiating source in a homogeneous
medium decreases as 1/r2, a wave confined within an ideal waveguide does not atten-
uate with distance. Examples are metallic waveguides (transmission lines) for high-
frequency electromagnetic waves that do not appreciably penetrate into conductors,
acoustic waveguides with nearly incompressible surfaces that supply large restoring
forces, and dielectric waveguides utilizing total internal reflection.

An electromagnetic field propagating in a waveguide can be written as a super-
position of modal field solutions of the electromagnetic wave equation and accom-
panying boundary conditions. These retain the same field pattern with a phase that
increases linearly along the waveguide axis. The modal fields of an electromagnetic
wave confined to a time-invariant three-, two-, or one-dimensional structure (inside a
box, rod, or region between two sheets) composed of conducting or dielectric media
thus exhibit the spatial symmetries of the boundaries.

To conceptualize electromagnetic modes, consider a planar waveguide consisting
of two parallel metallic or dielectric layers separated by a distance dwhere the z-axis is
oriented along the propagation direction of the wave and the x-axis is directed perpen-
dicular to the layers, A single, e.g., upward traveling plane wave incident on the space

with wavevector k
!
= kx, kzð Þ= k sinθ,cosθð Þ between the two layers is reflected into a

direction (−kx, kz); the two copropagating waves therefore generate a z-dependent
interference pattern that is absent at the entrance face of the waveguide. Accordingly,
an invariant pattern requires both an upward traveling wave and a downward traveling
wave at the entrance face with equal amplitudes. The depletion of the upward
traveling wave through reflection into the downward wave is then compensated
by the additional upward traveling contribution of the simultaneously reflected
downward wave.
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As evident from Figure 19.2, a further condition is that after an upward traveling
wave component reflects from the upper and then the lower boundary, reverting again
to an upward traveling wave, it must remain in phase with the upward field component
that has still not reflected from the boundary. Since the phase change over a distance
Δx isΔϕ = kΔx, the phase difference k(L1 − L2) + 2δr = 2d sin θ + 2δr between the two
rays shown in the figure, where δr is the phase change incurred during reflection, must
equal 2mπ. Hence, modes can only be formed from waves traveling at certain discrete

propagation angles. Further, the field polarization pattern must be preserved upon

multiple reflections. For a planar interface, this requires either TE- or TM-polarized
modes that propagate at slightly different angles as in general δTEr 6¼ δTMr .

The modal fields of a hollow waveguide with êz oriented along the propagation
direction are expressed as

E
!
m x,y,zð Þ =E!m x,yð Þei kzz−ωmtð Þ

H
!
m x,y,zð Þ=H!m x,yð Þei kzz−ωmtð Þ

ð19.18.1Þ

Since ∂/∂z and ∂/∂t acting on either field yield multiplicative factors of ikz or − iωm,
respectively, the electromagnetic wave equation applied to a mode transforms into the
modal field equation

r2
⊥−k

2
z +

ω2
m

c2

� �
E
!
m

B
!
m

( )
= 0 ð19.18.2Þ

Dividing the fields into components along andperpendicular to the directionof the z-axis,

r!⊥ × r!⊥ ×E
!
⊥


 �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

−∂Bz
∂t êz

=r!⊥ r!⊥E
!
⊥


 �
|fflfflfflfflffl{zfflfflfflfflffl}
− ∂Ez

∂z = − ikzEz

− r2
⊥E⊥|fflffl{zfflffl}

r2E
!
⊥ −

∂2E⊥
∂2z2

= −ω2

c2
E⊥
!
+ k2z E

!
⊥

− iωêz ×r
!
⊥Bz = ð19.18.3Þ

which together with an equivalent manipulation for the magnetic field leads to
(as can be deduced from the appearance of a relative factor of − 1/c2 in the Maxwell’s

equations for r! × E
!
and r! × B

!
)

d

dsinθ

dsinθL1 L2

FIGURE 19.2 Modal condition.
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E
!
⊥ = i

ω2

c2
−k2z

� �−1

−ωêz ×r
!
⊥Bz + kzr

!
⊥Ez


 �

B
!
⊥ = i

ω2

c2
−k2z

� �−1
ω

c2
êz ×r

!
⊥Ez + kzr

!
⊥Bz


 �
ð19.18.4Þ

Hence, the transverse components of the modal fields are determined by their
z-components.

At a conducting waveguide surface, surface charges and currents generate discon-

tinuities in E⊥ and Bk, while EkjS =B
!
⊥jS = 0. For rectangular geometries, again only

TE and TM fields retain their polarization upon reflection and therefore lead to invar-
iant field patterns. Therefore, while the boundary conditions EzjS = 0 must always be
satisfied by a modal field, for a TE mode, the electric field polarization at the surface is
transverse to the plane of incidence so that Ez = 0 while the magnetic field lies in the
plane of incidence. For TM modes with Bz = 0, the magnetic and electric fields are
instead polarized transverse and in the place of incidence, respectively. Finally, for
a transverse electromagnetic (TEM) wave, the z-components of both fields vanish

implying E
!
= B

!
= 0 from Equation (19.18.4) unless ω2

TEM = c2k2z and hence, from
the modal field equation

r2
⊥E

!
z = 0 ð19.18.5Þ

As the solutions to the Laplace equation are unique, EzjS = 0 at the boundaries implies
Ez = 0 within connected regions. TEM modes can however exist within volumes such
as those between two parallel wires or cylinders for which the conductors can support
different potentials.

For the TM (Bz = 0) mode of a rectangular waveguide that extends from zero to Lx
in the x-direction and from zero to Ly in y, since Ek = 0 at the surface, Ez = 0 at the
boundary walls and

E nm,TMð Þ
z =E0 sin

nπx

Lx
sin

mπy

Ly
ei k nmð Þ

z z−ωtð Þ ð19.18.6Þ

where from the wave equation

k2z nmð Þ = ω2

c2
−π2

n2

L2x
+
m2

L2y

 !
≡
ω2

c2
−k2z nm,cutoffð Þ ð19.18.7Þ

When ω equals the cutoff frequency, ω nm,cutoffð Þ = ck nm,cutoffð Þ
z in Equation (19.18.7),

k nmð Þ
z = 0 so that the mode propagates perpendicular to the waveguide axis and there-
fore exhibits zero group velocity in the direction of the waveguide. For ω below this
frequency, the (nm) mode is attenuated.

In the case of TE (Ez = 0) polarization, since e.g., on the x = 0 surface for
which Ek = 0) Ey = 0 and similarly B⊥ = 0) Bx = 0, the Maxwell’s equation
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r! ×B

 �

y
= −1=c2 ∂Ey=∂t

� �
yields (iω/c2)Ey = ikzBx − ∂xBz so that ∂xBz = 0 and by

extension ∂Bz=∂njS = 0 on the waveguide boundaries. Hence,

B nm,TEð Þ
z = cos

nπx

Lx
cos

mπy

Ly
ei k nmð Þ

z z−ωtð Þ ð19.18.8Þ

again implying Equation (19.18.7). The transverse field components follow again
from Equation (19.18.4).

From, e.g., cos x = (exp(ix) + exp(−ix))/2, the above modes consist of equal ampli-
tude plane waves propagating at angles ± θnmwith cosθnm = k nmð Þ

z =k with respect to the
z-axis. Their phase velocity

v nm,phaseð Þ =
ω

k nmð Þ
z

=
ω

kcosθnm
=

c

cosθnm
ð19.18.9Þ

is obtained by setting k nmð Þ
z z−ωt = 0 in, e.g., Equation (19.18.8). As θnm increases, the

phase fronts are more widely spaced and therefore propagate more rapidly along the
z-axis with vphase > c.

A pulse emitted by a localized source into a waveguide typically propagates in all
waveguide modes. Modes with large θnm are directed away from the waveguide axis
and thus propagate more slowly than modes with small θnm. The resulting pulse
spreading is termed waveguide dispersion. Quantitatively, information is transferred
down the waveguide at the group velocity, which is the component v(nm,group) = c cos

θnm = c2/v(nm,phase), of the wave velocity along the waveguide axis. This result can also

be derived from k2z
nmð Þ =ω2=c2−k2 nm,cutoffð Þ

z , which implies k nmð Þ
z dk nmð Þ

z =ωdω=c2 and
therefore

vgroup =
∂ω

∂k nmð Þ
z

=
c2k nmð Þ

z

ω
=

c2

vphase
ð19.18.10Þ

In an electromagnetic cavity, such as a cube with faces at xi = 0, π, each mode
possesses a fixed frequency. As an example, a TE mode with respect to propagation
in the z-direction possesses ∂xBz = 0 along the x = 0, π faces and ∂yBz = 0 along the
y = 0, π faces, so that

Bz =Bz0 c1 sinmzz + c2 cosmzzð Þcosmxxcosmyy ð19.18.11Þ

Along the z = 0, π planes, Bz = 0, leading to c2 = 0. Inserting the resulting expression
into the scalar wave equation yields the resonance frequencies

ω2
mxmymz

c2
=m2

x +m
2
y +m

2
z ð19.18.12Þ
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If the cavity is employed as an oscillator, the power loss from the finite metal
resistance is as in mechanics generally described by the Q-factor

Q =
2
π

energy stored
energy lost per cycle

ð19.18.13Þ

on the order of QT where T denotes the period. Since by the uncertainty principle (Δf)
(Δt) \≈ 1, the approximate width of the resonance peak, as can be shown analytically,
is given by Δf = f /Q.

1 =Δ
1
QT

� �
=Δ

f

Q

� �
=
2πΔω
Q

ð19.18.14Þ
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20
QUANTUM MECHANICS

The motion of small, light particles is incorrectly described by Newton’s laws and
instead exhibits the characteristics of wave motion. In particular, the behavior of
electrons that are bound to atomic nuclei with characteristic electric binding potentials
of the order of volts and that therefore participate in chemical processes is governed
by quantum mechanical laws. Consequently, quantum physics derives its relevance
from its applicability to the characteristic energy, time, and length scales of chemical
and biological processes.

20.1 FUNDAMENTAL PRINCIPLES

If a spatially uniform electron beam of electrons with momentum p passes through a
slit of width w and is subsequently recorded by a detector array after a further
distance d�w, each electron within the beam generates a single event at one of
the detectors with a location that varies for successive electrons. A histogram
of these positions generates a diffraction pattern with an angular half width of
Δθ1/2 = h/2pw, between the maximum and the first zero where Planck’s constant

h = 6.67 × 10− 31 J/ms. Since an identical pattern is generated with Δθ1/2 = λ/2w
for, e.g., water or sound waves, this result implies that the particle beam can be
described by a plane wave with a de Broglie wavelength
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λ =
h

p
ð20.1.1Þ

Given the wave nature of particle motion, an electron confined by a time-independent
potential, typified by the atomic potential, exhibits time-invariant patterns termed
spatial states or eigenmodes in the same manner that a rubber band fixed in a time-
independent manner at both ends supports certain stationary vibrational mode patterns.
The nature of these oscillations is clarified through an analogy with a string vibrating
in a mode at a frequency f1 in the presence of a sound wave with a frequency f2.
If the string possesses a further mode at a frequency f = f1 + f2 or f = f1 − f2, its
interaction with the ambient sound field will couple power between the two modes.
Similarly, a monochromatic electromagnetic wave of frequency ω exerts a force

F
!
= −eE

!
0 cos ωt +φð Þ, on an electron. If an electron is initially in a certain modal con-

figuration, the time-dependent dipole moment p! tð Þ associated with its displacement

from the nucleus interacts with the electric field according to ΔU = − p! tð Þ �E! tð Þ.
This is found to generate a transition to a second atomic state only if a second state
exists satisfying the relationship, with “hbar” defined by ℏ = h/2π,

hf =ℏω=E2−E1 ð20.1.2Þ

where E2 − E1 is, e.g., the measured difference in the chemical binding energies of
the electron in the two states. Accordingly, an atomic state with energy E oscillates
in time at a angular frequency

ω=E=ℏ ð20.1.3Þ

20.2 PARTICLE–WAVE DUALITY

If a spatially uniform forward propagating beam of electrons with momentum p!were

simply described by a classical wave, σ r
!, t
� �

=Asin k
!� r!−ωt + δ
� �

, the probability of

detecting an electron at a point r! at time t would be proportional to the power

/A2 sin2 k
!� r!−ωt + δ
� �

with k
!
= p

!
=ℏ = 2π=λ and ω = E(p)/ℏ = 2π/T. Thus, electrons

would, e.g., be absent at the planes k
! � r!−ωt + δ= 2πm, contradicting the uniformity of

the measured electron distribution.
To generate a function that describes the beam yet possesses uniform properties, a

second field, χ r
!, t
� �

=Acos k
!� r!−ωt + δ
� �

, must accordingly be introduced. The

probability of detecting an electron at r!, t
� �

is then the square of the amplitudes

(the powers) of each field, χ2 r
!, t
� �

+ σ2 r
!, t
� �

, which remains constant in space and
time. The formalism is simplified by postulating a complex wavefunction,
φ r

!, t
� �

= χ r!, t
� �

+ iσ r!, t
� �

, such that for a propagating beam,
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φ r!, t
� �

= cei k
!� x!−ωt
� �

ð20.2.1Þ

with complex conjugate φ* r
!, t
� �

= χ r
!, t
� �

− iσ r
!, t
� �

. The probability density of the

electron occupying a certain point r
! at time t is then

P r
!, t
� �

=φ* r
!, t
� �

φ r
!, t
� � ð20.2.2Þ

i.e., P r
!, t
� �

d3r corresponds to the probability of detecting the electron within a volume

of size d3r centered at the position r
! at time t. Consequently, for a single electron

confined to a volume Ve in Nd spatial dimensions,

ð
Ve

φ* r
!, t
� �

φ r
!, t
� �

dNd r = 1 ð20.2.3Þ

As the probability is dimensionless, while the dimension of dNd r equals DNd½ �, the
wavefunction possesses units 1=DNd=2

� �
.

Since p
!�� ��= h=λ implies that p! =ℏ k

!
where k

!
is thewavevectorwith magnitude equal

to the wavenumber k =
�� k! ��= 2π=λ, while E = ℏω, in a homogeneous medium, the

wavefunction of a uniform beam of N particles within a volume Ve with momentum
p! and energy E possesses the form

φ r
!, t
� �

=

ffiffiffiffiffi
N

Ve

r
ei k

!�x−ωt
� �

=

ffiffiffiffiffi
N

Ve

r
ei

p!

ℏ �x−E
ℏt

� �
ð20.2.4Þ

While replacing k
!
by − k

!
reverses the direction of the particle beam, substituting −ω

for ω alters the sign of the particle energy. The latter substitution is unphysical since
the energy is uniquely determined by the momentum through, e.g., E = p2=2m+U r!

� �
,

where U r
!� � is the potential function.

20.3 INTERFERENCE OF QUANTUM WAVES

For noninteracting particles, if, e.g., two oppositely directed beams with the same

frequency are separately described by φ1 r!, t
� �

=
ffiffiffiffiffiffiffiffiffiffiffi
N=Ve

p
ei kx−ωtð Þ and φ2 r!, t

� �
=ffiffiffiffiffiffiffiffiffiffiffi

N=Ve

p
e− i kx +ωtð Þ, the linear superposition φ r

!, t
� �

=φ1 r
!, t
� �

+φ2 r
!, t
� �

describes a

system in which both beams are present and for which the probability of detecting
a particle detection at a given point is

φ x, tð Þj j2 = φ1 x, tð Þj j2 + φ2 x, tð Þj j2 + 2Re φ1 x, tð Þφ2
* x, tð Þ� �

=
4N
Ve

cos2 kxð Þ ð20.3.1Þ
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implying that the particles are absent at certain points in space while halfway between
these points the probability density equals 4N/Ve. The overall number of particles
however correctly evaluates to 2N after integrating over Ve since cos2x averages to
1/2 over any number of periods. In contrast, the probability of detecting a classical
particle is the sum of the probabilities of finding the particle in each of the individual
beams. The classical result is recovered for incoherent beams for which the phase of
the wavefunctions varies rapidly over the times and distances that characterize the
measurement as the interference terms in the probability amplitude then average
spatially or temporally to zero.

20.4 SCHRÖDINGER EQUATION

Since wavefunctions superimpose linearly, in a spatially infinite uniform medium
with constant potential, U, a general electron wavefunction can be decomposed
into a finite or infinite number of plane waves of the form of Equation (20.2.4).
Although in spatially varying potentials both p

! and U r
!, t
� �

vary with position, if
the potential is approximated by a piecewise constant potential, so that within a small
volume of space, ΔV, around a point r

!
0 the potential function equals U r

!
0, t

� �
, a

general wavefunction can still similarly be expressed locally within ΔV as a superpo-
sition of plane waves with all possible momenta. Therefore, a differential equation
that for constant potentials possesses only these plane waves as solutions and that
enforces the proper boundary conditions at interfaces between the discrete regions
generates all physical solutions for general potentials. Noting that the spatial gradient
of φ r

!, t
� �

= cexp i p
!� r!=ℏ−Et=ℏ� �� �

yields i p!=ℏ times the wavefunction, while the
time derivative similarly leads to a proportionality factor − iE/ℏ, momentum and
energy operators that act on particle wavefunctions can be defined as

p
!
φ r

!, t
� �! p

!
opφ r

!, t
� �

= − iℏr! φ r
!, t
� � ð20.4.1Þ

and

Eφ r!, t
� �!Eopφ r!, t

� �
= iℏ

∂

∂t
φ r!, t
� � ð20.4.2Þ

(Here as in most treatments of quantum mechanics, the same notation (e.g., p!) is
employed for both operators and values).

For each plane wave E and p
! and therefore, the time and spatial dependence are

related by E = p2=2m+U r!, t
� �

. This constraint together with Equations (20.4.1)
and (20.4.2) yields the time-dependent Schrödinger equation, namely,

Hopφ≡ −
ℏ2

2m
r2 +U r!, t

� �
 �
φ r!, t
� �

= iℏ
∂

∂t
φ r!, t
� �

=Eopφ r!, t
� � ð20.4.3Þ
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where Hop is the Hamiltonian of the system, and physical boundary conditions must
be imposed to insure a unique wavefunction solution. Since the particle energy and
therefore the time derivative of the wavefunction remain finite,

φ r!, t +Δt
� �

= e−
i
ℏ

Ð t +Δt
t Hopdt0φ r!, t0

� �
≈ 1−

i

ℏ

ðt +Δt
t

Hopdt
0


 �
φ r

!, t
� � ð20.4.4Þ

and the absence of divergences in Hopφ r
!, t
� �

implies that φ r
!, t
� �

is a continuous

function of time. Similarly, since the kinetic energy is bounded, excluding unphysical

infinite potentials for which a compensating, divergent kinetic energy insures that the

total energy remains finite, integrating the Schrödinger equation over position vari-

ables establishes the continuity of both r! φ r
!, t
� �

and φ r
!, t
� �

.
For an energy-conserving system with a time-invariant potential, separating

variables with φ r
!, t
� �

=ψ r
!� �
χ tð Þ replaces Equation (20.4.3) by the time-independent

Schrödinger equation

Hopψ r
!� � ≡ −

ℏ2

2m
r2 +U r

!� �
 �
ψ r

!� � =Eψ r
!� � ð20.4.5Þ

while iℏdχ(t)/dt = Eχ(t) so that

φ r
!, t
� �

=ψ r
!� �
e− i

E
ℏ t ð20.4.6Þ

20.5 PARTICLE FLUX AND REFLECTION

The Schrödinger equation preserves the number of particles as left multiplying both
sides by φ* r

!, t
� �

yields

−
ℏ2

2m
r! � φ* r! φ
� �

− r! φ* � r! φ
h i

+φ*Uφ= iℏφ* ∂

∂t
φ ð20.5.1Þ

In the same manner, multiplying the complex conjugate of the Schrödinger equation

Hopφ
� �

* ≡ −
ℏ2

2m
r2 +U r

!, t
� �
 �

φ* r
!, t
� �

= − iℏ
∂

∂t
φ* r

!, t
� � ð20.5.2Þ

by φ, proceeding as above (which is equivalent to the transformation φ$ φ* of
Equation (20.5.1)) and subtracting the resulting equation from Equation (20.5.1)
leads to

−
ℏ2

2m
r! � φ* r! φ−φr! φ*
� �

= iℏ φ* ∂

∂t
φ+φ

∂

∂t
φ*


 �
= iℏ

∂

∂t
φφ*
� � ð20.5.3Þ

322 QUANTUM MECHANICS



In terms of the particle current and density

J
!
= −

iℏ
2m

φ* r! φ−φr! φ*
� �

ð20.5.4Þ

and

ρ =φφ* ð20.5.5Þ

Equation (20.5.3) represents the local particle continuity equation

r! � J! = −
∂ρ

∂t
ð20.5.6Þ

For a uniform beam, Equation (20.2.4), J
!
and ρ coincide with N v

!
=V and N/V. After

integration over any closed volume and applying Gauss’s law, Equation (8.4.1)

ð
S�V

J
!� dS= −

∂

∂t

ð
V

ρdV ð20.5.7Þ

For a particle confined in a region, φ = 0 on the boundaries. The left-hand side of
Equation (20.5.7) thenvanishes and the integratedparticle density (number of particles)
is time invariant.

Example

If a one-dimensional electron beam with E >U0 is incident on a potential step from
x < 0,

U xð Þ=U0θ xð Þ ð20.5.8Þ

where the Heaviside step function is defined by

θ xð Þ =
ðx
−∞

δ xð Þdx=
1 x > 0

1
2 x = 0

0 x < 0

8>><
>>:

ð20.5.9Þ

and then with ℏk < =
ffiffiffiffiffiffiffiffiffi
2mE

p
, ℏk> =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E−U0ð Þp

ϕ x, tð Þ=
e− i

E
ℏt eik < x +Re− ik < x
� �

x< 0

e− i
E
ℏtTeik > x x> 0

(
ð20.5.10Þ

With the reflected wave present, both the requirement of wavefunction conti-
nuity at x = 0

1 +R= T ð20.5.11Þ
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and continuity of the derivative of the wavefunction at x = 0

k < 1−Rð Þ = k> T ð20.5.12Þ

can be satisfied. Indeed, for a single incoming and transmitted plane wave at an
interface between two regions with differing U(x), the impedance ratio

1=ψð Þdψ= dx= ik = i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E−U xð Þð Þp

=ℏ between the derivative and the amplitude
of the wavefunction cannot be continuous across the interface. If a reflected wave
is additionally present, however, its impedance is the negative of that of the incom-
ing wave. Hence, the effective impedance associated with the sum of the reflected
and incoming waves can equal that on the transmitted side, as is evident by divid-
ing Equation (20.5.12) by Equation (20.5.11), which equates the impedance ratios
on both sides of the boundary. Further, multiplying the corresponding sides of
Equations (20.5.11) and (20.5.12) yields

k< 1−R2
� �

= k> T
2 ð20.5.13Þ

which insures the conservation of particle flux at the interface and can therefore
be obtained directly from the continuity of Equation (20.5.4) at x = 0 given
(20.5.10). Here,ℏk<(1 − R2) equals the sum of themomentum component of the inci-
dentwavemultipliedby theprobability of finding the electron in this component (e.g.,
the particle current) and the corresponding (negative) quantity for the reflected wave.

20.6 WAVE PACKET PROPAGATION

In one dimension, a particle localized within a region jxj < a at t = 0 can be modeled by
a Gaussian wave packet

φ0 x, t = 0ð Þ = 1ffiffiffiffiffi
2π

p
a
e−

x2

2a2 ð20.6.1Þ

with Fourier components

φ0 k, t = 0ð Þ= 1
2πa

ð∞
−∞

e−
x2

2a2e− ikxdx

=
1

2πa
e−

k2 a2
2

ð∞
−∞

e−
1

2a2
x + ika2ð Þ2dx

=
1ffiffiffi
2

p
π
e−

k2 a2
2

ð∞
−∞

e−x
02
dx0

=
1ffiffiffiffiffi
2π

p e−
k2 a2
2

ð20.6.2Þ

Associating the width of φ0(x) and φ0(k) with the standard deviation of the probability
distribution jφ0j2 implies Δx≈a=

ffiffiffi
2

p
and Δk≈1=

ffiffiffi
2

p
a

� �
so that, with p = ℏk,

ΔxΔp =ℏ=2 ð20.6.3Þ
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A Gaussian wave packet propagating with velocity v = p/m = ℏk0/m is described
at time t = 0 by φk0 k, t = 0ð Þ=φ0 k−k0, t = 0ð Þ where the phase of each plane
wave wavefunction component evolves in time according to φk0 k, tð Þ=φk0 k, t = 0ð Þ
exp − iω kð Þtð Þ with ω(k) = E(k)/ℏ. Defining k0 = k − k0 and Taylor expanding ω(k)
in k with the group velocity vg k0ð Þ = ∂ω=∂kjk0 = ∂E=∂pjp0 and ω kð Þ≈ω0 k0ð Þ+
vg k0ð Þk0 + 1=2!ð Þ∂vg=∂k

��
k0
k02 + � � �,

φk0 k, tð Þ = 1ffiffiffiffiffi
2π

p e−
k02 a2

2 e− iω kð Þt≈
1ffiffiffiffiffi
2π

p e−
k02 a2

2 e− i ω0t + vg k0t + 1
2
∂vg
∂k k

02t
� �

ð20.6.4Þ

Introducing the variables

b0 = x−vgt

a02 = a2 + i
1
2
∂vg
∂k

����
k = k0

t
ð20.6.5Þ

and inverse Fourier transforming yield for the propagating wave packet at time t

φk0 x, tð Þ = e− iω0t

2π

ð∞
−∞

e−
k02a02

2 − ik0vgteikxdk

=
ei k0x−ω0tð Þ

2π

ð∞
−∞

e−
k02a02

2 + ik0b0dk0

=
ei k0x−ω0tð Þ

2π
e
− b02
2a02
ð∞
−∞

e
−a02

2 k0− ib0
a02

� �2

dk0

=
ei k0x−ω0tð Þffiffiffiffiffi

2π
p

a0
e
− b02
2a02

ð20.6.6Þ

Accordingly, the wave packet travels at the group velocity, while its width increases
linearly with t at large times. That is, since the group velocities of the wavevector
components in the packets differ, at large t, the wave packet spreading is governed
by this velocity difference multiplied by time.

Example

If the electron wavefunction varies over macroscopic lengths, from the
Schrödinger equation with U = 0,

−
ℏ
2me

∂2ψ x, tð Þ
∂x2

= −
1:05 × 10−34

2 9:1 × 10−31
� � ∂2ψ x, tð Þ

∂x2
= −

1

2:09 × 104
∂2ψ x, tð Þ

∂x2
= i

∂ψ x, tð Þ
∂t

ð20.6.7Þ

325WAVE PACKET PROPAGATION



Therefore, an electron wavefunction ψ (x, t0)≈ c exp(−x2/2(10− 2)2) with x in
meters broadens over second time scales; more generally, the electron probability
distribution varies in seconds as approximately 104 times the square of its distance
variation in meters, as is also evident from ΔE≈ (Δp)2/2me, which together
with ΔxΔp≈ ℏ implies ΔE≈ (Δp)2/2me≈ ℏ2/2me(Δx)2 and therefore from
ΔtΔE≈ ℏ (cf. Eq. (20.9.5)) Δt/(Δx)2≈ 2me/ℏ≈ 2 × 104.

20.7 NUMERICAL SOLUTIONS

The time-dependent Schrödinger equation in a single spatial dimension subject to
initial conditions given by the values of the wavefunction φ(xi, t0) on an N point
equidistant computational grid xi = x1 + iΔx, i = 0, 1, 2, ...,N − 1 at an initial time t0
can be solved numerically for the wavefunction at later times tj = t0 + jΔt by employ-
ing the forward and centered finite difference approximations for the temporal and
spatial derivatives, respectively,

∂φ x, tð Þ
∂t

����
x = xi , t = tj

≈
φ xi, tj + 1
� �

−φ xi, tj
� �

Δt

∂2φ x, tð Þ
∂x2

����
x = xi , t = tj

≈
φ xi+ 1, tj
� �

−2φ xi, tj
� �

+φ xi−1, tj
� �

Δxð Þ2

ð20.7.1Þ

from which, omitting the sum over the repeated index i0

φ xi, tj+ 1
� �’ 1 +

Δt
iℏ

Hii0


 �
φ xi0 , tj
� � ð20.7.2Þ

where the nonzero elements Hii0 of the matrix H are

Hii =
ℏ2

m Δxð Þ2 +V xi, tið Þ

Hii+ 1 =Hii−1 = −
ℏ2

2m Δxð Þ2
ð20.7.3Þ

A program for an initial wavefunction φ(x, 0) = exp(−x2/8), zero potential and
boundary conditions

φ x0, tj
� �

=φ xN + 1, tj
� �

= 0 ð20.7.4Þ
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that set the wavefunction equal to zero for all times, tj, at two points displaced by Δx
from the computational window endpoints, is given in atomic units, Sec.21.4, for
which ℏ =me = 1 by

clf
hold on
deltaT = .005;
numberOfSteps = 500;
fieldWidth = 2;
computationalWindowWidth = 20;
numberOfGridPoints = 31;

%computational grid
dx = computationalWindowWidth / ( numberOfGridPoints – 1 );
gridPoints = linspace( –computationalWindowWidth / 2, ...

computationalWindowWidth / 2, numberOfGridPoints );

%initial wavefunction
wavefunction = exp( – gridPoints.̂2 ./ ( 2 * fieldWidth 2̂ ) );
wavefunctionNew = zeros( 1, numberOfGridPoints );

%zero potential
potential = zeros( 1,numberOfGridPoints );

%Hamiltonian matrix elements
diagonalElements = 1 – i * deltaT * ( –1 / dx 2̂ + potential );
offDiagonalElement = –i * deltaT / ( 2 * dx 2̂ );

%zero boundary conditions
wavefunction(1) = 0;
wavefunction(numberOfGridPoints) = 0;

for loop = 1 : numberOfSteps
for innerLoop = 2 : numberOfGridPoints – 1

wavefunctionNew(innerLoop) = diagonalElements ...
(innerLoop) * wavefunction(innerLoop) + ...
offDiagonalElement*(wavefunction(innerLoop+1)+...
wavefunction(innerLoop – 1) );

end
wavefunction = wavefunctionNew;

%plotting routines
if ( rem( loop, 100 ) == 0 )

plot( abs( wavefunction ),‘g’ );
drawnow;
end

end
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More accurate routines, required for rapidly varying potentials, large time steps,
or small grid point spacing, are described in, e.g., D. Yevick, A Short Course in
Computational Science and Engineering: C++, Java and Octave Numerical
Programming with Free Software Tools, Cambridge University Press.

20.8 QUANTUM MECHANICAL OPERATORS

While a function transforms the value of its argument into an output value, an

operator transforms its function argument into a second, output function.

A linear operator satisfies O(af1 + bf2) = aO( f1) + bO( f2) for any two functions f1
and f2. An operator product AB( f) represents A(Bf). Quantum mechanical operators
are associative, A(B +C) = AB + AC, but not generally commutative, e.g.,

xoppop
� �

f = x − iℏ
d

dx
f xð Þ

� 
≠ popxop
� �

f = − iℏ
d

dx
xf xð Þ½ �= − iℏf + xoppop

� �
f

ð20.8.1Þ
The commutator

A,B½ �=AB−BA ð20.8.2Þ

of two operators, e.g., [pop, xop] = −iℏ, quantifies their degree of noncommutativity.
If the equation Of = g possesses a unique solution f for every function g, the inverse
operator O− 1 with g =O− 1f exists with OO− 1 =O− 1O = Iop, where Iop represents the

identity operator. Functions of operators are defined through power series expansions,

e.g., exp(O) =
P

mO
m/m ! The operator ordering in functions of several noncommut-

ing operators as

exp A+Bð Þ= Iop +A+B+
A2 +AB +BA+B2

2!
+ � � � ð20.8.3Þ

must however be preserved.

In quantum mechanics, the result of a physical measurement corresponds to an

expectation value of an operator; e.g., for the average momentum of a state with
wavefunction φ r

!
:t

� �
,

p
!
op

� �
=
ð
V
φ* r

!, t
� �

p
!
opφ r

!, t
� �

= − iℏ
ð
V
φ* r

!, t
� �r! φ r

!, t
� � ð20.8.4Þ

The correspondence principle states that quantum mechanical expectation values

such as hxi and hpi obey classical equations of motion for forces that vary slowly over

distances compared to the electron wavelength. For a general time-dependent opera-
tor, O(t), typified by, O(t) = xop + αpopt, and a Hermitian Hamiltonian H obeying
Equation (20.8.8) below, from Equation (20.5.2),
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d O tð Þh i
dt

=
d

dt

ð∞
−∞

ψ* x, tð ÞO tð Þψ x, tð Þdx

=
ð∞
−∞

dψ* x, tð Þ
dt

O tð Þψ x, tð Þ +ψ* x, tð ÞO tð Þdψ x, tð Þ
dt

+ψ* x, tð ÞdO tð Þ
dt

ψ x, tð Þ

2
6664

3
7775dx

=
dO tð Þ
dt

� �
+

1
iℏ

ð∞
−∞

−ψ* x, tð ÞHopO tð Þψ x, tð Þ+ψ* x, tð ÞO tð ÞHopψ x, tð Þ� �
dx

=
dO tð Þ
dt

� �
+

1
iℏ

O tð Þ,Hop

� �� �

ð20.8.5Þ

Accordingly, a time-independent operator that commutes with the Hamiltonian

remains constant with time and thus corresponds to a physically conserved quantity.

Example

For O = xop, recalling that [AB,C] = A[B,C] + [A,C]B, which further implies
[A, f (A)] = 0,

d xh i
dt

=
1
iℏ

xop,Hop
� �� �

=
1
iℏ

xop,
p2op
2m

" #* +
=

i

2mℏ
pop pop, xop
� �

+ pop, xop
� �

pop
� �

=
1
m

pop
� �

ð20.8.6Þ
so that

d2 xh i
dt2

=
1
m

d pop
� �
dt

=
1

iℏm
pop,V xð Þ� �� �

= −
1
m

d

dx


 �
V xð Þ−V xð Þ d

dx


 �� �

= −
1
m

dV xð Þ
dx

� �
ð20.8.7Þ

While the expectation values involve integrals over all positions, if a particle is
described by a localized wave packet, the force acts approximately at a point
and Equation (20.8.7) admits a classical mechanics interpretation.

If an operator O represents a real quantity (a formally complex quantity is typified
by the energy of a decaying system described by a non-Hermitian Hop), for any
function f x

!� �,
ð
V
f * r

!� �
Of r

!� �
dV =

ð
V
f * r

!� �
Of r

!� �
dV


 �
*

=
ð
V
Of r

!� �� �*
f r

!� �
dV ð20.8.8Þ
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Defining the transpose of the operator O by
ð
V
f r

!� �
Og r

!� �� �
dV =

ð
V
OT f r

!� �� �
g r

!� �
dV ð20.8.9Þ

Equation (20.8.8) implies the Hermitian condition for O

OT =O* ð20.8.10Þ
or equivalently in terms of the Hermitian conjugate operator O†

O† ≡ O*
� �T

=O ð20.8.11Þ

From the discussion accompanying Equation (12.2.9), a Hermitian operator Hop

further subject to appropriate Hermitian boundary conditions possesses a complete
spectrum of eigenfunctions ψn with real eigenvalues En satisfying in general

Hop r
!, t
� �

ψn r
!, t
� �

=En tð Þψn r
!, t
� � ð20.8.12Þ

that are orthogonal and can further by proper normalization be made orthonormal
such that ð

V
ψn r!, t
� �

ψm r!, t
� �

dV = δnm ð20.8.13Þ

According to Equation (20.4.6), for time-independent Hamiltonians, H,

φn r
!, t
� �

=ψn r
!� �
e− i

En
ℏ t ð20.8.14Þ

so that each eigenfunction preserves its spatial pattern with a phase that increases
linearly with time.

For a finite potential, the energy eigenvalue spectrum consists of both a
continuum of higher energy states that generally correspond to distorted plane waves
that are not confined by the potential and a finite set of discrete bound states, such that
for two nondegenerate eigenvalues, En + 1 − En >Δ, for finite Δ. Accordingly, δnm in
Equation (20.8.13) represents a Kronecker delta function in the discrete part of the
spectrum and a Dirac delta function in the continuous spectral region.

That the eigenvectors form a complete set implies that any square-integrable func-
tion, i.e., any function that satisfies

ð
V
ϕ r

!� ��� ��2dV < ∞ ð20.8.15Þ

can be written as

ϕ r
!� � =X

n

cnψn r
!� �+

ð
Econtinuous

c Eð ÞψE r
!� �
dE ð20.8.16Þ

330 QUANTUM MECHANICS



where in view of Equation (20.8.13)

cn
c Eð Þ

� �
=
ð
V

ψ*
n r

!� �
ψ*
E r!
� �

8<
:

9=
;ϕ r

!� �
dV ð20.8.17Þ

and hence

ϕ r
!, t
� �

=
X
n

cnψn r
!� �
e−

i
ℏEnt +

ð
Econtinuous

c Eð ÞψE r
!� �
e−

i
ℏEtdE ð20.8.18Þ

For any ϕ x
!� �, where the sum includes an integral over the continuous modal

spectrum,

ð
V
ϕ* r

!� �
ϕ r

!� �
dV =

X
n

c*ncn =
X
n

ð
V
ψn r

!0� �
ϕ* r

!0� �
dV 0
ð
V
ψ*
n r

!00� �
ϕ r

!00� �
dV 00

=
ð
V
ϕ r

!00� �ð
V
ϕ* r

!0� � X
n

ψ*
n r

!00� �
ψn r

!0� � !
dV 0dV 00 ð20.8.19Þ

yielding the completeness relationX
n

ψ*
n r

!00� �
ψn r

!0� �
= δ3 r

!00−r!0� � ð20.8.20Þ

Further, the probability that a particle in the wavefunction ϕ x
!� �

occupies the eigen-

state ψm x
!� � equals in the position space representation

ð
V
ψm r

!� �
ϕ r

!� �
d3x

����
����
2

= cmj j2 ð20.8.21Þ

from Equation (20.8.16). If ϕ r
!� � is normalized to unity,

X
m

cmj j2 = 1.

20.9 HEISENBERG UNCERTAINTY RELATION

If a wavefunction is an eigenstate of two different Hermitian operators, the physical

quantities described by these operators possess definite values. Further, the two opera-

tors commute when acting on this eigenfunction, since O1O2ψ = λ1λ2ψ = λ2λ1ψ =

O2O1ψ . If a complete set of eigenfunctions are eigenstates of both operators, the

two operators are fully commuting. However, if two operators commute, an

eigenfunction of one operator is only necessarily an eigenfunction of the second

operator if the eigenfunction is a nondegenerate eigenfunction of the first operator,
i.e., only one eigenfunction of the first operator possesses the given eigenvalue.
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Otherwise, the eigenfunctions of the second operator are in general linear combina-

tions of the degenerate eigenfunctions of the first operator. In systems with high
degrees of symmetry such as the hydrogen atom, several mutually commuting
operators O1,O2, ... termed a complete set of commuting observables are required
to characterize the system such that a unique state corresponds to each distinct
set of eigenvalues λ1, λ2, ..., λN of these operators. These eigenvalues provide the
maximum amount of information about a state available at a given time.

Example

In one dimension, eigenfunctions can be degenerate for periodic boundary condi-
tions but not for nonperiodic boundary conditions. Hence, on a one-dimensional
circle with circumference L for zero potential, exp(iknθ) and exp(−iknθ) with kn =
2nπ/L constitute two degenerate eigenfunctions of the Hamiltonian, Hop. Further,
Hop and the parity operator defined by Pf(x) = f(−x) commute and form a complete
set of observables since, for each kn, the parity operator eigenfunctions with
eigenvalues + 1 and − 1 are unique and are given, respectively, by the symmetric
and antisymmetric linear combinations, cos(knθ/L) and sin(knθ/L), of the above
eigenfunctions.

For noncommuting Hermitian operators, O1 and O2, an eigenfunction of O1 is

therefore generally a linear combination of the eigenfunctions of O2. Repeated

measurements of the quantity associated with O2 yield the eigenvalues of O2 with

probabilities given by the squared moduli of the coefficients in this superposition.

The variance of these values about their mean value constitutes the uncertainty of

the measurement associated with O2. If O1 and O2 are repeatedly applied individually
to the same wavefunction, ψ(x), the product of the uncertainties in each operator can
be quantified by considering (ΔO1 + iλΔO2)ψ(x), with λ real and ΔO=O− Oh i≡
O−
Ð ∞
−∞ ψ* xð ÞO xð Þψ xð Þdx. As O =ΔO + const in this expression [ΔO1,ΔO2] =

[O1,O2]. Minimizing the positive definite quantity

f λð Þ=
ð∞
−∞

ΔO1 + iλΔO2ð Þψ xð Þ½ �* ΔO1 + iλΔO2ð Þψ xð Þdx

=
ð∞
−∞

ψ* xð Þ ΔO1− iλΔO2ð Þ ΔO1 + iλΔO2ð Þψ xð Þdx

=
ð∞
−∞

ψ* xð Þ ΔO1ð Þ2 + iλ ΔO1,ΔO2½ �+ λ2 ΔO2ð Þ2
� �

ψ xð Þdx

= ΔO1ð Þ2
D E

+ iλ O1,O2½ �h i+ λ2 ΔO2ð Þ2
D E

ð20.9.1Þ
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according to df =dλjλ= λmin
= 0 results in λmin = −ih[O1,O2]i=2h(ΔO2)

2i. Since f(λ) ≥ 0,

ΔO1ð Þ2
D E

−
− i O1,O2½ �h ið Þ2

2 ΔO2ð Þ2
D E +

− i O1,O2½ �h ið Þ2

4 ΔO2ð Þ2
D E ≥ 0 ð20.9.2Þ

and

ΔO1ð Þ2
D E

ΔO2ð Þ2
D E

≥
1
4

− i O1,O2½ �h ið Þ2 ð20.9.3Þ

SettingO1 = pop,O2 = qop, [O1,O2] = −iℏ yields theHeisenberg uncertainty relation

ΔpΔx ≥
ℏ
2

ð20.9.4Þ

where Δx represents the root-mean-squared (r.m.s) value h(Δx)2i1/2. In a homogene-
ous medium, the minimum of ΔpΔx is realized by Equation (20.6.3) for a Gaussian
wavefunction. Thus, if a particle is localized in a region of extent Δx, the spread in its
momentum space wavefunction equals or exceeds ℏ/2Δx. Employing instead O1 =
Eop = iℏ∂/∂t,O2 = t yields the uncertainty relation

ΔtΔE ≥ℏ=2 ð20.9.5Þ

indicating that the spread of energies in a wavefunction for a state with lifetime Δt
equals or exceeds ℏ/2Δt. As a consequence, to measure the energy of a system to

within a resolution of ΔE requires a time ≥ ℏ/2ΔE. Since E = ℏω, Equation (20.9.5)

is identical to the relationshipΔωΔt ≥ 1/2 between the frequency spread of a pulse and
its time duration.

Example

The Fourier transform of a square pulse between t = −T/2 and t = T/2 with a carrier
frequency ω0 evaluates to

ψ ωð Þ =
ðT

2

−T
2

e− iωteiω0tdt =
1

i ω0−ωð Þ ei
ω0 −ωð ÞT

2 −e− i
ω0 −ωð ÞT

2


 �
=

2
ω0−ωð Þ sin

ω0−ωð ÞT
2


 �

ð20.9.6Þ

The first zeros atω −ω0 = ±2 π/T correspond to the frequencies for which the phase
of the integrand increases linearly by 2π over the integration region. Hence, Δω≈
4π/T and ΔωΔt =ΔωT≈ 4π. The product exceeds 1/2 since the pulse is non-
Gaussian.
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20.10 HILBERT SPACE REPRESENTATION

A vector V
!
in three-dimensional space is described by an array of three components.

In a given orthogonal coordinate system with basis vectors êj, these are the coeffi-

cients V
! � êj of V

!
=
P

jêj V
!� êj
� �

. Hence, while the vector is a fixed physical quantity,

its representation as a vector with components V
! � êj depends on the choice of coor-

dinate system. In the same manner, a wavefunction can be viewed as a fixed physical

quantity analogous to the vector V
!
termed aHilbert space (column) vector denoted by

a ket jgi with as many components as the number of degrees of freedom of the system

that it describes. The orthogonal basis that corresponds to êj is then provided by a com-
plete set of eigenfunctions jψ ji associated with a Hermitian operator in this system.

To form the expression corresponding to V
! � êj, a bra h f j≡ j f i† = (j f i*)T repre-

senting a row vector formed by Hermitian conjugation is additionally defined such

that h f j gi represents the inner product of the state j f i and jgi. An operator, which

when acting on a function generates a second function, in a Hilbert space acts instead

on a ket to generate a second ket; since a ket is represented by a vector, an operator

adopts the form of a matrix. The ket generated by the action of the operator O on a ket

j f i can be written as either Oj f i or jOf i. The matrix element of an operator between

two states, corresponding in the Schrödinger picture to
Ð
f * r

!� �
Og r

!� �
dV , is then writ-

ten h f jOjgi, which if O is Hermitian further equals h f jO†jgi = hOf j gi from the anal-

ogous formula
Ð
f * r

!� �
O†g r

!� �
dV =

Ð
Of r

!� �� �*g r
!� �
dV . A Hilbert space vector jgi is

then expressed (represented) in the orthogonal basis jψ ji as

gj i =
X
j

ψ j

�� �
ψ jjg
� � ð20.10.1Þ

Since jgi is arbitrary, the identity operator in a Hilbert space is represented by

1 =
X
j

ψ j

�� �
ψ j

� ��=X
j

Pj ð20.10.2Þ

where the projection operator Pj = jψ jihψ jj is constructed such that hgjPj or Pjjgi
yields the j:th component of g in the basis jψ ii. Additionally, hψnj ψmi = δnm implies
PnPm = δnmPm.

The eigenfunctions of the position operator, Ox
!= x!op, are given by

ψ x
!0 x

!� � = δ x
!
−x

!0� � ð20.10.3Þ

and are therefore not square integrable. Accordingly, they do not belong to the Hilbert
space and are termed generalized states. However, the above definition insures that
they are normalized according to
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ψ x!jψ x!0
� �

=
ð
× 3
ψ x!
* x

!00� �
ψx!0 x

!00� �
d3x00 ≡

ð∞
−∞

ð∞
−∞

ð∞
−∞

ψx
!* x

!00� �
ψ x

!0 x
!00� �

d3x00 = δ x
!
−x

!0� �
ð20.10.4Þ

while the closure or completeness relation becomes

ð
× 3
ψx

!* x!0� �
ψ x

! x!00� �
d3x = δ x!0−x!00� � ð20.10.5Þ

Often, the eigenstate of an operator is denoted by its eigenvalue so that ψx
!0 x

!� � is

replaced by x
!0�� � and the closure relation is then abbreviated:

ð
× 3

x
!�� � x

!� ��d3x= I ð20.10.6Þ

The three-dimensional eigenstates of the momentum operator expressed in position
space satisfy

− iℏr! ψp
! x

!� � = p
!
ψp

! x
!� � ð20.10.7Þ

which possesses the normalized plane wave solutions

ψp
! x!
� �

= ψ j p!� �
= 2πℏð Þ−3=2ei

ℏp
!�x! ð20.10.8Þ

with ð
× 3
ψp

!* x
!� �
ψp

! x
!� �
d3x ≡ δ p

!
−p

!0� � ð20.10.9Þ

The eigenstates of the position operator in momentum space are determined
identically from

− iℏr! p
!ψ x

! p
!� �= x

!
ψ x

! p
!� � ð20.10.10Þ

A position space wavefunction ϕ x
!� � can be expressed in momentum space as the

coefficient of ψp
! x

!� �, which is the Fourier integral,

ϕ p
!� � = p

!jϕ� �
= 2πℏð Þ−3=2

ð
× 3
e−

i
ℏp

!�x!ϕ x
!� �
d3x ð20.10.11Þ

The inverse Fourier transform recasts the momentum space wavefunction into posi-
tion space

ϕ x
!� � = x

!jϕ� �
= 2πℏð Þ−3=2

ð
× 3
e

i
ℏp

!�x!ϕ p
!� �
d3p ð20.10.12Þ
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The normalization of the momentum and position state wavefunctions is identical
by Parseval’s theorem

ð
× 3
ψ* p

!� �
ψ p

!� �
d3p =

ð
× 3
ψ* p

!� � 2πℏð Þ−3=2
ð
× 3
ψ x

!� �
e−

i
ℏp

!� x!d3x

 �

d3p

= 2πℏð Þ−3=2
ð
× 3

ð
× 3
ψ* p!
� �

e−
i
ℏp

!�x!d3p

 �

ψ x!
� �

d3x

=
ð
× 3
ψ x!
� �

ψ* x!
� �

d3x

ð20.10.13Þ

For a system confined to a finite volume, the modal spectrum is discrete and the
integrals are replaced by summations. Finally, the classical value of the particle
momentum in the momentum representation

p!
� �

=
ð
× 3
ψ* p!
� �

p!ψ p!
� �

d3p ð20.10.14Þ

corresponds to, in analogy with x
!� � in the position representation, the integral over the

momentum of each plane wave component weighted by its probability.

20.11 SQUARE WELL AND DELTA FUNCTION POTENTIALS

In an even potential [P,Hop] = 0 where P is the parity operator, since

P Hop xð Þψ xð Þ� �
=Hop −xð Þψ −xð Þ=Hop xð Þψ −xð Þ=HopP ψ xð Þð Þ ð20.11.1Þ

and theeigenfunctions can therefore be simultaneous eigensolutions ofP andHop.Even

and odd eigenfunctions ofP obeyPψ = ψ andPψ = −ψ , respectively,while an arbitrary
wavefunction is expressed in terms of its even and odd parts according to

ψ xð Þ = 1
2
1 +Pð Þψ xð Þ+ 1

2
1−Pð Þψ xð Þ =ψ even xð Þ +ψ odd xð Þ ð20.11.2Þ

Example

A particle cannot penetrate the barrier of an infinite square potential well

U xð Þ =
0 xj j< a

2

∞ xj j ≥ a

2

8>><
>>:

ð20.11.3Þ
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resulting in the boundary conditions ψ(−a/2) = ψ(a/2) = 0. Hence, While the
Schrödinger equation admits a plane wave solution inside the well, a single, iso-
lated rightward propagating wave converts through reflection at the square well
boundary into a leftward wave. The resulting interference pattern varies with time
and therefore does not correspond to an eigenmode. If however the initial field
superimposes right and left propagating plane waves with equal amplitudes and
phases, as the leftward traveling wave converts into a rightward wave, the right-
ward wave simultaneously reflects, becoming a leftward wave. At certain discrete
wavevectors, the component of the field that is reflected twice is in phase with the
unreflected field and the overall field pattern remains unchanged with time.
For a particle energy E, the even solutions of the time-independent Schrö-
dinger equation are, noting that the longest wavelength satisfying the boundary
conditions is 2a,

ψ n x, tð Þ= cos
2πnx
2a


 �
, n= 1,3,5, ::: ð20.11.4Þ

with eigenenergies

En =
p2

2m
=
ℏ2k2

2m
=
ℏ2

2m
πn

a


 �2
ð20.11.5Þ

The odd solutions are similarly

ψn x, tð Þ = sin
2πnx
2a


 �
, n = 2,4,6, ::: ð20.11.6Þ

The lowest-order wavefunction is comprised of plane waves with k = ± π/a imply-
ingΔp≈ h/a, while the spread in position can be approximated byΔx ≈ a. Accord-
ingly, ΔxΔp≈ h > ℏ/2.

The bound state eigenvalues of a finite potential well

U xð Þ =
U0 xj j< a

2

0 xj j ≥ a

2

8><
>: ð20.11.7Þ

with U0 < 0 are negative. Hence, the wavefunctions in the outer region satisfy
d2ψn xð Þ=dx2 = p2nψn xð Þ with p2n = −2mEn=ℏ2 > 0 for jxj > a/2, while in the inner
region, d2ψn xð Þ=dx2 = −h2nψn xð Þ with h2n = 2m En−U0ð Þ=ℏ2 > 0 so that

ψn xð Þ = A1 sin hnxð Þ+A2 cos hnxð Þ xj j ≤ a=2
B1epnx +B2e−pnx xj j> a=2

(
ð20.11.8Þ

The coefficients are determined by boundary and continuity conditions. As the
even and odd wavefunctions decay exponentially as jxj !∞,
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ψ even
n xð Þ

ψ odd
n xð Þ

( )
=A

1
sign xð Þ

� �
e−pn xj j ð20.11.9Þ

while in the inner region,

ψ even
n xð Þ

ψ odd
n xð Þ

( )
=B

cos hnxð Þ
sin hnxð Þ

( )
ð20.11.10Þ

By symmetry, if the boundary conditions Aψn(a/2 − δ) = Bψn(a/2 + δ) and
Aψ 0

n a=2−δð Þ=Bψ 0
n a=2 + δð Þ are imposed at a/2, the conditions are simul-

taneously fulfilled at − a/2. Eliminating A and B by dividing the second con-
dition by the first yields a continuity condition for the logarithmic derivative
(the effective impedance) ψ 0/ψ of the wavefunction. After multiplying by
a/2, the resulting equation contains only the dimensionless quantities hna/2
and pna/2:

a

2
lim
δ!∞

ψ 0
n

a

2
−δ

� �

ψn
a

2
−δ

� � = hn
a

2

− tan
hna

2


 �
even

cot
hna

2


 �
odd

8>>><
>>>:

9>>>=
>>>;

=
a

2
lim
δ!∞

ψ 0
n

a

2
+ δ

� �

ψn
a

2
+ δ

� � = −pn
a

2

ð20.11.11Þ

Additionally, hna/2 and pna/2 must be situated on a circle with radius R as

ha

2


 �2

+
pa

2

� �2
=

2m En−U0ð Þ
ℏ2 −

2mEn

ℏ2


 �
a2

4
= −

2mU0

ℏ2

a2

4
≡ R2

ð20.11.12Þ

Plotting this equation as a circle on a graph with hna/2 as the x-coordinate and pna/
2 as the y-coordinate together with the upper and lower relationships in Equation
(20.11.11) yields the bound mode energies from each point of intersection of the
curves (the energy eigenvalue is then determined either from pn = (−2mEn/ℏ

2)1/2

or equivalently from the corresponding value of hn).
A delta function potential U(x) = −U0δ(x) alters the wavefunction slope by − A

at x = 0 resulting in a single symmetric bound mode. That is, for an eigenenergy
Ebound < 0, the wavefunction possesses the form of Equation (20.11.9) for x 6¼ 0
with logarithmic derivative + pbound to the left of the origin and − pbound to the
right of the origin. Integrating the Schrödinger equation across x = 0 determines
pbound and hence the energy Ebound = −ℏ2

bound=2m of the single bound state
according to
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1
ψbound 0ð Þ

ðx = δ

x = −δ

−
ℏ2

2m
d2ψbound

dx2
−U0δ xð Þψbound


 �
dx

= −
ℏ2

2m
1

ψbound 0ð Þ
dψbound

dx

����
x = δ

x = −δ

−U0

=
2ℏ2pbound

2m
−U0

=
Ebound

ψbound 0ð Þ
ðx= δ

x = −δ

ψbound xð Þdx= 0 ð20.11.13Þ

20.12 WKB METHOD

The “slowly varying envelope” WKB method approximates the solution to the
one-dimensional Schrödinger equation by

ψ xð Þ=A xð Þei
Ð x

0
k xð Þdx ð20.12.1Þ

where k xð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E−U xð Þð Þ=ℏ2

q
represents an effective particle wavenumber. For

potentials that vary slowly compared to the local particle wavelength, the derivatives

of A(x) are far smaller than those of the exponential factor. Thus, after inserting
Equation (20.12.1) into ∂2ψ /dx2 + k2(x)ψ = 0,

d2A

dx2|{z}
≈0

+ 2ik xð ÞdA
dx

+A ,−k2 xð Þ+ idk xð Þ
dx

" #0
BB@

1
CCAei
Ð x

0
k x0ð Þdx0 + Ak2 xð Þei

Ð x

0
k x0ð Þdx0 = 0

ð20.12.2Þ

The first term can be neglected after which

dA xð Þ
A xð Þ = −

1
2
dk xð Þ
k xð Þ ð20.12.3Þ

implying A(x) = (k(x))− 1/2. Accordingly, jA(x)j2 reproduces the classical probability
of observing a particle within an infinitesimal spatial interval, which varies
linearly with the time spent in the interval and hence inversely with the velocity
v = p/m = ℏk(x)/m.
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Near the classical turning point, at which k(x)/ E − V≈ 0, the slowly varying
approximation fails as the local particle wavelength is large. For quasi-infinite
steplike potentials, the reflected wavefunction cancels the incident wavefunction at
each boundary yielding a π phase shift. Otherwise, the potential is approximated
by a linear function near the turning point, and, in one of several techniques, the
resulting Airy equation d2ϕ/dx2 + xϕ = 0 is solved in momentum space, Fourier
transformed back to position space, and the method of steepest decent employed to
generate

ϕ xð Þ =

1

x1=4
sin

2
3
x3=2 +

π

4


 �
x! ∞

1

2 −xð Þ1=4
e−

2
3 −xð Þ3=2 x! −∞

8>>>><
>>>>:

ð20.12.4Þ

As these expressions coincide with the WKB approximation when the potential is
approximated by a linear function, the phase shift upon reflection equals π/2.

At each point in space inside the turning point, the field is composed of, e.g., an
unreflected rightward traveling wave together with a rightward traveling wave that
has experienced two reflections (as well as all other multiply reflected waves). For
these to interfere constructively and thus preserve the wave pattern, the phase
increment after two reflections must coincide with the phase of the unreflected wave
up to a multiple of 2π. With Δθ = kΔx, the resulting WKB quantization condition
adopts the form

þ
kdx=

1
ℏ

þ
pdx= n+ μð Þ2π ð20.12.5Þ

or equivalently

ðrouter turning point

rinner turning point

pdx=
1
2
n + μð Þh ð20.12.6Þ

where, according to the aforementioned discussion, μ = 1/2 for a potential that varies

slowly near the turning point, while μ = 1 for an infinite potential well. If no reflection

occurs as for an orbiting electron, μ = 0.

Example

The transmission of particles with energy E <U0 through a finite potential barrier,

U xð Þ=
U0 0 < x< L

0 elsewhere

(
ð20.12.7Þ

340 QUANTUM MECHANICS



is given in the WKB approximation by

Tj j2 / e−2
Ð L
0 k xð Þdx ð20.12.8Þ

In a complete quantum mechanical analysis, a beam incident from x < 0 with E <

U0, k0 =
ffiffiffiffiffiffiffiffiffi
2mE

p
, and k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0−Eð Þp

is described by

ψ xð Þ/
eik0x +Re− ik0x x < 0

c1ekx + c2e−kx 0 ≤ x ≤ L

Teik0x x > L

8>><
>>:

ð20.12.9Þ

From the continuity of the wavefunction and its derivative at x = L,

T = c1ekL + c2e−kL

ik0T = k c1ekL−c2e−kL
� � ð20.12.10Þ

Subsequently eliminating the term proportional to c1,

k− ik0ð ÞT = 2c2ke
−kL ð20.12.11Þ

or

Tj j2 = c2j j2 4k2

k2 + k0
2


 �
e−2kL ð20.12.12Þ

For kL >> 1, the wavefunction component at x = 0 resulting from backward reflec-
tion from x = L is negligible, and the boundary conditions at x = 0 are

1 +R= c2

ik0 1−Rð Þ = −kc2
ð20.12.13Þ

implying ik0(1 − (c2 − 1)) = −c2k or c2 = 2ik0/(ik0 − k) and

Tj j2 = 4kk0
k2 + k20


 �
2

e−2kL ð20.12.14Þ

If a general potential is approximated by a piecewise constant potential function
and the reflected field within each associated internal section neglected, the above
formula for the transmission coefficient can be employed within each section.
Multiplying the coefficients reproduces the exponential behavior of the WKB
result (Eq. (20.12.8)).
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20.13 HARMONIC OSCILLATORS

For quadratic potentials, the symmetry of the Hamiltonian with respect to momentum
and position operators is similarly manifest in the form of the raising and lowering
operators for the eigenfunctions. That is, factoring the Hamiltonian and employing
[pop, xop] = −iℏ,

Hop =
p2op
2m

+
mω2

2
x2op

=ℏω

ffiffiffiffiffiffiffi
mω

2ℏ

r
xop− i

popffiffiffiffiffiffiffiffiffiffiffiffi
2mℏω

p

 � ffiffiffiffiffiffiffi

mω

2ℏ

r
xop + i

popffiffiffiffiffiffiffiffiffiffiffiffi
2mℏω

p

 �

+
i

2ℏ
pop, xop
� �� 

≡ ℏω a†a+ 1
2

� �
ð20.13.1Þ

where the operators a and a† obey the commutation relations

a, a†½ � = 1
Hop,a
� �

=ℏω a†a,a½ �=ℏω a† �a,a½ �+ a†,a½ �a

 �

= −ℏωa

Hop, a†
� �

=ℏω a†a,a†½ � =ℏωa†
ð20.13.2Þ

If χn represents an eigenstate with energy En, the energy of the eigenstate aχn is
En − ℏω since

Hop aχnð Þ = aHop + Hop,a
� �� �

χn = E−ℏωð Þχn ð20.13.3Þ

while the energy of the eigenstate a†χn is En + ℏω. As a and a† thus transform an
eigenstate into the next lower and higher eigenstates, respectively, they constitute
lowering and raising operators. Further,

aψ0 xð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2mℏω

r
mωx+ℏ

d

dx


 �
ψ0 xð Þ = 0 ð20.13.4Þ

since no state with a lower energy than ψ0 exists implying

dψ0 xð Þ
ψ0 xð Þ = −

mω

ℏ
xdx ð20.13.5Þ

Accordingly, the lowest-order wavefunction, after normalizing the probability to
unity, equals

ψ 0 xð Þ = mω

πℏ

� �1
4
e−

mω
2ℏ x

2 ð20.13.6Þ
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Orthogonal higher-order wavefunctions are obtained by applying the raising oper-
ator to Equation (20.13.6). Applying a†a to an eigenfunction yields the order (number)
of the state since, from [a, a†] = 1,

a†að Þa†a†:::a†|fflfflfflfflffl{zfflfflfflfflffl}
n times

ψ 0 = a
† aa†
� �

a†:::a†|fflfflffl{zfflfflffl}
n−1 times

ψ0

= a†:::a†|fflfflffl{zfflfflffl}
n times

ψ0 + a
† a†a
� �

a†:::a†|fflfflffl{zfflfflffl}
n−1times

ψ0

..

.

= na†:::a†|fflfflffl{zfflfflffl}
n times

ψ0 + a†:::a†|fflfflffl{zfflfflffl}
n + 1 times

aψ0|{z}
0

= na†:::a†|fflfflffl{zfflfflffl}
n times

ψ0

ð20.13.7Þ

Then, since a† and a are Hermitian conjugates and aa† = a†a + 1,

ð∞

−∞

a†a†:::a†|fflfflfflfflffl{zfflfflfflfflffl}
m times

ψ0

0
@

1
A
*

a†a†:::a†|fflfflfflfflffl{zfflfflfflfflffl}
n times

ψ0 dV =
ð∞

−∞

ψ*
0aa:::a|fflffl{zfflffl}
m times

a†a†:::a†|fflfflfflfflffl{zfflfflfflfflffl}
n times

ψ0 dV

=
ð∞

−∞

ψ*
0 aa:::a|fflffl{zfflffl}
m−1 times

aa†
� �

a†a†:::a†|fflfflfflfflffl{zfflfflfflfflffl}
n−1 times

ψ0 dV

= n
ð∞

−∞

ψ*
0 aa:::a|fflffl{zfflffl}
m−2 times

aa†
� �

a†a†:::a†|fflfflfflfflffl{zfflfflfflfflffl}
n−2 times

ψ0 dV

= n!δmn

ð20.13.8Þ

and the orthonormalized wavefunctions are given by

ψn =
1ffiffiffiffi
n!

p a†
� �n

ψ0 ð20.13.9Þ

20.14 HEISENBERG REPRESENTATION

In the Schrödinger formalism of quantum mechanics operators such as pop and xop
are time independent, while the state vectors ψ x

!, t
� ��� �

satisfy iℏ∂ ψ x
!, t
� ��� �

=∂t =

Hop ψ x!, t
� ��� �

and therefore depend on time as
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ψn x
!, t
� ��� �

= e−
i
ℏHopt ψn x

!,0
� ��� �

= e−
i
ℏEnt ψn x

!,0
� ��� � ð20.14.1Þ

State vectors in the Heisenberg picture instead equal ψ x
!,0
� ��� �

at all t. An operator
expectation value, which as a physical quantity must be identical in both formulations,
then adopts the form for a Hermitian and time-independent Hop:

Oh i = ψ x
!, t
� �� ��O ψ x

!, t
� ��� �

= ψ x
!,0
� �� ��ei

ℏHoptOe−
i
ℏHopt ψ x

!,0
� ��� � ð20.14.2Þ

Hence, the Heisenberg operator OH(t) is given by

OH tð Þ= ei
ℏHoptOe−

i
ℏHopt ð20.14.3Þ

which obeys the time evolution equation

d

dt
OH tð Þ= i

ℏ
Hope

i
ℏHoptOe−

i
ℏHopt −e

i
ℏHoptOe−

i
ℏHoptHop

� �
=
i

ℏ
Hop,OH tð Þ� � ð20.14.4Þ

If the Schrödinger operator O itself depends explicitly on time, the above formula is
replaced by

d

dt
OH tð Þ= i

ℏ
Hop,OH tð Þ� �

+ e
i
ℏHopt

∂O tð Þ
∂t

e−
i
ℏHopt =

i

ℏ
Hop,OH tð Þ� �

+
∂O tð Þ
∂t

� 
H

ð20.14.5Þ
Example

For a free particle, dpH(t)/dt = (i/ℏ)[pop
2 /2m, pH(t)] = 0 so that pH(t) = p(0) = p.

Hence, p is conserved consistent with its lack of explicit time dependence and
[p,H] = 0.

20.15 TRANSLATION OPERATORS

(From this point on, the standard notation that does not distinguish between operators
such as pop and the corresponding variables, p, is employed in order to shorten
algebraic expressions.) If H is not explicitly time dependent, energy is conserved.
The time translation operator, OΔt,

ψ x, t +Δtð Þ =OΔtψ x, tð Þ = 1 +Δt
∂

∂t
+

Δtð Þ2
2!

∂2

∂t2
+ � � �

 !
ψ x, tð Þ = eΔt ∂∂tψ x, tð Þ = e−Δt iℏHψ x, tð Þ

ð20.15.1Þ
commutes with H, while for a position-independent system, H similarly commutes
with the momentum and therefore the spatial translation operator
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ψ x +Δx, tð Þ =OΔxψ x, tð Þ= 1+Δx
∂

∂x
+

Δxð Þ2
2!

∂2

∂x2
+ � � �

 !
ψ x, tð Þ= eΔx iℏpψ x, tð Þ

ð20.15.2Þ

Therefore, for momentum eigenstates, ψ(x, t) = exp(ikx)ψ(0, t). Finally, if the system
is invariant under a rotation about a certain axis, the commutator ofHwith the rotation
operator formed by exponentiating the component of the angular momentum operator
about this axis vanishes.

20.16 PERTURBATION THEORY

Assume that an analytically involved Hamiltonian H0 =H(0) + λH with λ� 1 differs
slightly from a tractable Hamiltonian, H(0), with eigenvalues and eigenstates

H 0ð Þ ψ 0ð Þ
i

��� E
=E 0ð Þ

i ψ 0ð Þ
i

��� E
ð20.16.1Þ

satisfying the normalization condition
�
ψ 0ð Þ
k

��ψ 0ð Þ
n

�
= δkn. Approximate eigenstates of

H can then be obtained by expanding

ψkj i=A λð Þ ψ 0ð Þ
k

��� E
+ λ
X
n≠k

Bkn λð Þ
���ψ 0ð Þ

n

E !
ð20.16.2Þ

For jψ ii normalized to unity, A(λ = 0) = 1, while Bkn(λ = 0) = 0. Inserting into Hjψki =
Ekjψki and expanding B(λ) and Ek in powers of λ according to

Bkn λð Þ= c 1ð Þ
n + λc 2ð Þ

n + � � �

Ek =E
0ð Þ
k + λE 1ð Þ

k + � � �
ð20.16.3Þ

result in

H 0ð Þ + λH
� �

ψ 0ð Þ
k

��� E
+ λ
X
n≠k

c 1ð Þ
n ψ 0ð Þ

n

��� E
+ λ2

X
n≠k

c 2ð Þ
n ψ 0ð Þ

n

��� E
+ � � �

 !

= E 0ð Þ
k + λE 1ð Þ

k + λ2E 2ð Þ
k + � � �

� �
ψ 0ð Þ
k

��� E
+ λ
X
n≠k

c 1ð Þ
n ψ 0ð Þ

n

��� E
+ λ2

X
n≠k

c 2ð Þ
n ψ 0ð Þ

n

��� E
+ � � �

 !

ð20.16.4Þ

Equating terms proportional to λ and projecting onto
�
ψ 0ð Þ
k

��,
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ψ 0ð Þ
k

D ���λH ψ 0ð Þ
k

��� E
= λE 1ð Þ

k ψ 0ð Þ
k

���ψ 0ð Þ
k

D E
= λE 1ð Þ

k ð20.16.5Þ

Thus, to order λ, the deviation of the energy from its unperturbed value is obtained by
weighting the perturbation Hamiltonian at each spatial point with the probability of
finding the system at the point.

The first-order change of jψki is found by projecting with ψ 0ð Þ
m

� �� for m 6¼ k:

ψ 0ð Þ
m

D ���λH ψ 0ð Þ
k

��� E
+ λc 1ð Þ

m E 0ð Þ
m ψ 0ð Þ

m

���ψ 0ð Þ
m

D E
= λE 0ð Þ

k c 1ð Þ
m ψ 0ð Þ

m

���ψ 0ð Þ
m

D E
ð20.16.6Þ

Hence, for orthonormalized eigenstates,

ψkj i≈ ψ 0ð Þ
k

��� E
+ λ
X
m≠k

c 1ð Þ
m

���ψ 0ð Þ
m

E
= ψ 0ð Þ

k

��� E
+ λ
X
m≠k

ψ 0ð Þ
m

D ���H ψ 0ð Þ
k

��� E

E 0ð Þ
k −E 0ð Þ

m

���ψ 0ð Þ
m

E
ð20.16.7Þ

The apparent divergence for closely spaced energy levels is resolved by degenerate
perturbation theory. If the first-order correction to the energy is small or zero as
for, e.g., an antisymmetric perturbation to a symmetric state, the second-order
contribution to the energy, which incorporates the first-order wavefunction change,

dominates. Finally, projecting Equation (20.16.4) onto ψ 0ð Þ
k

D ���
λ2
X
n≠k

c 1ð Þ
n ψ 0ð Þ

k

D ���H ψ 0ð Þ
n

�� E
= λ2E 2ð Þ

k ψ 0ð Þ
k jψ 0ð Þ

k

D E
= λ2E 2ð Þ

k ð20.16.8Þ

and inserting c 1ð Þ
n from Equation (20.16.7) give the second-order energy correction

E 2ð Þ
k =

X
n≠k

ψ 0ð Þ
k

D ���H ψ 0ð Þ
n

��� E
ψ 0ð Þ
n

D ���H ψ 0ð Þ
k

��� E

E 0ð Þ
k −E 0ð Þ

n

ð20.16.9Þ

This term contributes negatively to the ground state energy, while the energy shift of
other states is in general primarily influenced by the closest energy eigenstate and is
negative if this state has a higher energy and is otherwise positive. Accordingly, states
tend to repel in second order.

If the exact normalized eigenstate jψ ii is approximated by a first-order estimate
~ψ ij i= ψ ij i + δψ ij i, possessing the same symmetries (such as odd or even), a second-
or higher-order error is incurred in the estimated energy since for Hermitian H for
which Hjψ ii = hψ ijH = Ei,

δEi =
~ψ ih jH ~ψ ij i
~ψ ij ~ψ ih i −Ei

≈
Ei + δψ ih jH ψ ij i+ ψ ih jH δψ ij i

1 + ψ ijδψ ih i+ δψ ijψ ih i −Ei

≈ δψ ih jH ψ ij i+ ψ ih jH δψ ij i−Ei ψ ijδψ ih i + δψ ijψ ih ið Þ = 0

ð20.16.10Þ
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Additionally, for the lowest-order eigenstate, jψ1i,

~E1 =
~ψ1h jH ~ψ1j i
~ψ1j ~ψ1h i =

X∞
m = 1

~ψ1jψmh i ψmh jH ψmj i ψmj ~ψ1h i

~ψ1j ~ψ1h i

=

X∞
m = 1

Em ~ψ1jψmh ij j2

~ψ1j ~ψ1h i >

X∞
m= 1

E1 ~ψ1jψmh ij j2

~ψ1j ~ψ1h i =E1 ð20.16.11Þ

Thus, if, e.g., an approximate lowest eigenstate depends on parameters αm,m = 1,
2, ..., minimizing the second expression in Equation (20.16.11) (or equivalently
~ψh jH ~ψj i subject to the normalization condition ~ψ j~ψh i = 1) with respect to the αm
yields an optimal estimate of the wavefunction and energy within the parameter space.
A related result is the Hellmann–Feynman theorem, which states that if the Hamilto-
nian and hence normalized eigenstates of a system depend on a parameter, so that
H(λ)jψ (λ)i = E(λ)jψ(λ)i while dhψ(λ)j ψ (λ)i/dλ = 0 from hψ(λ)j ψ(λ)i = 1,

dE λð Þ
dλ

=
d

dλ
ψ λð Þh jH λð Þ ψ λð Þj i

=
d

dλ
ψ λð Þh j


 �
H λð Þ ψ λð Þj i+ ψ λð Þh jdH λð Þ

dλ
ψ λð Þj i+ ψ λð Þh jH λð Þ d

dλ
ψ λð Þj i


 �

=E λð Þ d
dλ

ψ λð Þjψ λð Þh i + ψ λð Þh jdH λð Þ
dλ

ψ λð Þj i

= ψ λð Þh jdH λð Þ
dλ

ψ λð Þj i ð20.16.12Þ

Finally, in the Rayleigh–Ritz method, ~ψj i of Equation (20.16.11) is written as a linear
superposition of N approximate eigenstates with unknown coefficients. The partial
derivatives of ~E1 with respect to each of the coefficients are separately set to zero
leading to a system of N linear equations; finally, taking inner products of these
equations with each of the eigenstates leads to a system of N linear equations.

If the Hamiltonian and boundary conditions of a system are invariant under
symmetry transformations, sets of degenerate eigenvalues generally exist resulting
in divergent energy denominators in Equations (20.16.7) and (20.16.9) for pairs of
these states. An asymmetric perturbation, however, removes this degeneracy. Hence,
in degenerate perturbation theory, zeroth-order wavefunctions are constructed that
replicate this asymmetry, while nondegenerate modes are incorporated as in standard
perturbation theory. For two degenerate states jψ0

j i, j= 1,2 with energy E(0) of a
Hamiltonian H, in the presence of an asymmetric perturbation λH0, each perturbed
wavefunction can be expressed as a linear combination of the ψ0

m:

ψ =
X2
m= 1

c 0ð Þ
m ψ 0ð Þ

m ð20.16.13Þ
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Then to lowest order,

X2
m= 1

E 0ð Þ + λH0−E
� �

c 0ð Þ
m ψ 0ð Þ

m = 0 ð20.16.14Þ

leading after projecting with ψ 0ð Þ
l

*, l= 1,2, where H0
lm ≡

�
ψ 0ð Þ
l

��H0 ψ 0ð Þ
m

�� �
, to the linear

equation system

X2
m = 1

λH0
lm + E 0ð Þ−E

� �
δlm


 �
c 0ð Þ
m = 0 ð20.16.15Þ

which possesses a nontrivial solution when

λH0
11 +E

0ð Þ−E λH0
12

λH0
21 λH0

22 +E
0ð Þ−E

�����
�����= 0 ð20.16.16Þ

The perturbed energies are given by the binomial theorem

E1,2 =E
0ð Þ +

H 0
11 +H

0
22

2
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0

11 +H
0
22

2


 �2
+H0

12H
0
21

s
ð20.16.17Þ

For each eigenenergy, c 0ð Þ
1 and c 0ð Þ

2 are proportional to the elements of the normalized
eigenvector.

Time-dependent perturbation theory applies to the time-dependent Schrödinger
equation with

H tð Þ =H 0ð Þ + λH0 tð Þ ð20.16.18Þ

for which a general unperturbed solution with λ = 0 is given in terms of the eigenfunc-
tions of H(0) by

ψ 0ð Þ x
!, t
� �

=
X
m

c 0ð Þ
m e−

i
ℏE

0ð Þ
m tψ 0ð Þ

m x
!� � ð20.16.19Þ

The effect of the perturbation can then be incorporated through time-dependent
coefficients cm(t):

ψ x
!, t
� �

=
X
m

cm tð Þe− i
ℏE

0ð Þ
m tψ 0ð Þ

m x
!� � ð20.16.20Þ

Inserting this expression into the time-dependent Schrödinger equation yields

iℏ
X
m

dcm tð Þ
dt

− ,
i

ℏ
E 0ð Þ
m cm tð Þ

 !
e−

i
ℏE

0ð Þ
m tψ 0ð Þ

m x!
� �

=
X
m

cm tð Þe− i
ℏE

0ð Þ
m t

�E
0ð Þ
m + λH0 tð Þ


 �
ψ 0ð Þ
m x

!� � ð20.16.21Þ
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Multiplying both sides by ψ 0ð Þ
k

* xð Þ and integrating over all space,

dck tð Þ
dt

= −
i

ℏ
λ
X
m

cm tð Þ
ð
V
ψ 0ð Þ
k

* x
!� �
H0 tð Þψ 0ð Þ

m x
!� �
dV


 �
e

i
ℏ E 0ð Þ

k −E 0ð Þ
mð Þt

≡ −
i

ℏ
λ
X
m

cm tð ÞH0
km tð Þei

ℏ E 0ð Þ
k −E 0ð Þ

mð Þt
ð20.16.22Þ

In a system with two states, k and m, and H0 = 2d0 cos
��

E 0ð Þ
k −E 0ð Þ

m

�
t=ℏ
�
, Equa-

tion (20.16.22) becomes, after neglecting terms that vary rapidly with time as

exp
�
± il
�
E 0ð Þ
k −E 0ð Þ

m

�
t=ℏ
�
with l = 1, 2,

dck tð Þ
dt

= −
i

ℏ
λd0cm tð Þ

dcm tð Þ
dt

= −
i

ℏ
λd0ck tð Þ

ð20.16.23Þ

Combining these reproduces the harmonic oscillator equation. Hence, for cm(0) = 1,
ck(0) = 0, the amplitude cm describes a cosine function, while ck varies as a sine func-
tion. For times small compared to the oscillation period, h/λd, the probability of obser-
ving the electron in states m and k therefore decreases parabolically as Pm = P0

cos2(κt)≈ P0(1 − (κt)2) with κ = λd=ℏ and increases linearly, respectively.
More generally, for times sufficiently small that cm(t)≈ 1, the amplitude of the kth

state is, where H0 is redefined to include λ,

ck tð Þ= −
i

ℏ

ð t
0
H 0

km x
!, t0
� �

e
i
ℏ E 0ð Þ

k −E 0ð Þ
mð Þt0dt0 ð20.16.24Þ

For

H0 x, tð Þ= 2H0 xð Þcos ωtð Þ=H0 xð Þ eiωt + e− iωt
� � ð20.16.25Þ

the time integral yields

ck tð Þ = −
i

ℏ
e

i
ℏ E 0ð Þ

k −E 0ð Þ
m +ℏωð Þt −1

i
ℏ E 0ð Þ

k −E 0ð Þ
m +ℏω

� � +
e

i
ℏ E 0ð Þ

k −E 0ð Þ
m −ℏωð Þt −1

i
ℏ E 0ð Þ

k −E 0ð Þ
m −ℏω

� �
0
B@

1
CAH0

km ð20.16.26Þ

Again, for cm = 1, ck = 0, in the presence of a static (ω = 0) perturbation, ck initially

increases. However, the relative phases of the two modes evolve in time at a rate pro-

portional to their energy difference. When t = π=
�
E 0ð Þ
k −E 0ð Þ

m

�
, the two wavefunctions
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are 180� out of phase and the coupled amplitude from mode m possesses the opposite

sign to the initially transferred amplitude. The amplitude in mode k therefore oscillates

sinusoidally. If ω 6¼ 0, however, the phase of the coupling term additionally varies

with time resulting in coupled amplitudes corresponding to the sum and difference

of the phase of the perturbation and the wavefunction phase. If for two modes

E 0ð Þ
k −E 0ð Þ

m ≈ℏω, the perturbation compensates for the dephasing of the two modes

with time in the second term of Equation (20.16.26). That is, when the coupled

amplitude is negative as a result of dephasing, the perturbation has changed sign

resulting in a net positive coupled amplitude over the entire oscillation cycle. Hence,

the second term initially increases linearly with time, while the amplitude of the first

term oscillates rapidly and therefore remains small. Accordingly,

ck tð Þj j2≈4
sin2

t

2ℏ
E 0ð Þ
k −E 0ð Þ

m −ℏω
� �

E 0ð Þ
k −E 0ð Þ

m −ℏω
� �2 H0

km

�� ��2 ð20.16.27Þ

For states forming a continuum or quasicontinuum around E 0ð Þ
k , designating the

number of states per unit volume with energy less than E by Ν(E) and the density
of states per unit volume by

Ρ Eð Þ= dΝ Eð Þ
dE

ð20.16.28Þ

yields Ρ(E)ΔE for the number of states per unit volume in a region of energy ΔE
around E. If the amplitude and frequency of the periodic perturbation change slowly,

the coupled modes k are narrowly distributed in energy around E 0ð Þ
k =E 0ð Þ

m +ℏω com-
pared to the energy scales over which Ρ(E) and H 0

km vary significantly. The approx-
imate transition probability to these modes is then

P tð Þ =
X
k

ck tð Þj j2

≈4 H0
km

�� ��2ð∞
−∞

sin2
t

2ℏ
E 0ð Þ
k −E 0ð Þ

m −ℏω
� �

E 0ð Þ
k −E 0ð Þ

m −ℏω
� �2 Ρ E 0ð Þ

k

� �
dE 0ð Þ

k

≈4 H0
km

�� ��2 πt

2ℏ

� �
Ρ E 0ð Þ

m +ℏω
� �

ð20.16.29Þ

where the integral in the second line requires the formula for the residue at a double
pole together with the observation that for a principal part integration, only half of the
residue is encircled (cf. Section 10.5), so that, with the substitution αx = x0,
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ð∞
−∞

sin2αx
x2

dx= −
α

4

ð∞
−∞

e−2ix
0
−2 + e2ix

0

x02
dx0

=
α

2
Re
ð∞
−∞

1−e2ix
0

x02
dx0

=
α

2
Re

2πi
2

1
n−1ð Þ!


 �
dn−1

dx0n−1
x02

1−e2ix
0

x02

� ����
x = 0,n= 2

=
α

2
Re

2πi
2

−2ie2ix
0

� ����
x0 = 0

= πα

ð20.16.30Þ

This yields Fermi’s golden rule for the initial rate of transitions per unit volume,
which is defined as the transition probability per unit time, dP/dt, from a state at
E 0ð Þ
m to states k near E 0ð Þ

m +ℏω:

R=
2π
ℏ

H0
km

�� ��2Ρ E 0ð Þ
m +ℏω

� �
ð20.16.31Þ

An alternative statement of the rule is obtained by identifying

lim
α!0

sin2α x−x0ð Þ
x−x0ð Þ2 = παδ x−x0ð Þ ð20.16.32Þ

which yields for the rate of transition to a single state at E 0ð Þ
m +ℏω

R≈
2π
ℏ

H0
km

�� ��2δ E 0ð Þ
k −E 0ð Þ

m +ℏω
� �

ð20.16.33Þ

20.17 ADIABATIC THEOREM

From the discussion following Equation (20.16.26), if the time variation of the potential
considerablyexceeds the relativeperiod,Tbeat = 1/Δf = h/ΔEofapairof states, thepositive
amplitude coupled over a half-period Tbeat/2 between the states will be canceled by the
negative amplitude acquired over the subsequentTbeat/2 time interval.Hence, if the poten-
tial varies more slowly than Tbeat for all pairs of states and nondegenerate eigenstates
remain nondegenerate, the distribution over the system over its eigenstates is preserved.

Inserting the time-dependent system wavefunction written as

ψ tð Þ=
X∞
n = 1

an tð Þψn tð Þe− i
ℏ

Ð t
0 En t0ð Þdt0 ð20.17.1Þ
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in which the ψn(t) represent eigenfunctions of the instantaneous potential

H tð Þψn tð Þ =En tð Þψn tð Þ ð20.17.2Þ

into the time-dependent Schrödinger equation, Hψ tð Þ=Pnan tð ÞEnψn tð Þexp
− i
Ð t
0En t0ð Þdt0=ℏ� �

cancels the term in which iℏ∂/∂t acts on the last term of
Equation (20.17.1), leading to

X∞
n= 1

dan tð Þ
dt

ψn tð Þ + an tð Þdψn tð Þ
dt


 �
e−

i
ℏ

Ð t
0 En t0ð Þdt0 = 0 ð20.17.3Þ

For a system initially in a single state m at t = 0 that remains nondegenerate during
time evolution, projecting onto ψm(t) yields

dam tð Þ
dt

= −am tð Þ ψm tð Þh j d
dt

ψm tð Þj i−
X
n≠m

an tð Þ ψm tð Þh j d
dt

ψn tð Þj ie− i
ℏ

Ð t
0 En t0ð Þ−Em t0ð Þð Þdt0

ð20.17.4Þ

Further, differentiating Equation (20.17.2) with respect to time and projecting onto a state
jψm(t)i with m 6¼ n yields, since hψm(t)jdEn(t)/dtjψn(t)i = dEn(t)/dthψm(t)j ψn(t)i = 0,
while by hermiticity hψm(t)|H(djψn(t)i/dt) = Emhψm(t)j(djψn(t)i/dt),

ψm tð Þh j d
dt

ψn tð Þj i= 1
En−Emð Þ ψm tð Þh jdH

dt
ψn tð Þj i ð20.17.5Þ

Hence, if H(t) is dominated by low-frequency components such that H(t)≈ ηeiωt with
ηω/(ωn − ωm)� (1/|ψn(t)i)d|ψn(t)i/dt for n 6¼m, the second term on the right-hand
side of Equation (20.17.4) can be neglected relative to the first term, leading to

am tð Þ= am 0ð Þei
ℏ

Ð t
0 ψm t0ð Þh jiℏ d

d t0 ψm t0ð Þj idt0 ð20.17.6Þ

Hence, the state amplitude is preserved under an adiabatic transformation, while its
phase advances according to the sum of the geometric phase appearing in Equation
(20.17.6) and the dynamic phase of Equation (20.17.1).
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21
ATOMIC PHYSICS

While atomic and molecular physics constitutes a fundamental application area of
quantum mechanics, the three-dimensional and often asymmetric or nonlinear atomic
bonding however introduces considerable mathematical complexity that is generally
addressed through involved computational methods. At the same time, knowledge of
the properties of the electronic states of highly symmetric potentials, such as that of
hydrogen, and the response of these states to external forces can often provide insight
into more complex systems.

21.1 PROPERTIES OF FERMIONS

A wavefunction describing a set of identical particles must remain invariant if any
two particles are interchanged twice (or, equivalently, the probability distribution
must remain invariant upon a single interchange). Hence, e.g., ψ x!1, x

!
2,…, x!N

� �
=

cψ x
!
2, x

!
1,…, x!N

� �
with c2 = 1, where x!j encompasses all system variables (e.g., spatial

and spin) describing the jth particle. From experiment, c = +1 for particles with integer

spin, termed bosons, so that the total wavefunction is symmetric upon interchange

of any two particles, while for fermions with half-integer spin, c = −1 and the total

wavefunction is instead antisymmetric under such interchanges. A system such as

a nucleus composed of an even number of fermions (protons and neutrons) acts
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as a boson when exchanged with an identical system since the wavefunction is multi-

plied by −1 upon exchange of each individual subparticle, while it behaves as a fer-

mion for an odd number of subparticles.
The wavefunction of a system of N separately identifiable, noninteracting

particles, 1, 2,…,N, in states s(1), s(2),…, s(n), with H =
P

m Hm (xm), and the
energy E =

P
m Es(m), is formed from the product of the individual particle wavefunc-

tions. If the particles are instead identical bosons, with Nl particles in s(l) where
N =

P
lNl, the wavefunction is given by the symmetric product

ψ s 1ð Þ,s 2ð Þ,…,s Nð Þ x1, x2,…, xnð Þ= N1!N2!…

N!

� �1
2

Pm

YN
k = 1

ψ s kð Þ xmð Þ
 !

ð21.1.1Þ

where Pm represents all permutations of the indices m and the normalization factor
is the reciprocal of the number of distinct combinations of the indices. Thus, denoting
a = s(1) and b = s(2),

ψa,a,b x1, x2, x3ð Þ

=

ffiffiffiffi
2!
3!

r
ψa x1ð Þψa x2ð Þψb x3ð Þ +ψa x1ð Þψa x3ð Þψb x2ð Þ+ψa x2ð Þψa x3ð Þψb x1ð Þð Þ

ð21.1.2Þ
where the factor of 2! accounts for the additional three permutations of 1, 2, 3 that
yield duplicate wavefunctions. For fermions, each term in the product in Equation
(21.1.1) must be multiplied by an additional factor (−1)p, which equals 1 and −1
when the indices m form even or odd permutations of (1, 2,…, N), respectively.
Consequently, two particles cannot occupy the same state (e.g., ψa(x1)ψa(x2) equals
−ψa(x1)ψa(x2) after interchanging 1$ 2 and therefore must vanish as a = −a
implies a = 0) implying that all Ni = 1 in Equation (21.1.1), resulting in a normal-

ization factor
ffiffiffiffiffiffiffiffiffiffi
1=N!

p
. Since a determinant changes sign upon interchange of any two

rows or columns, the wavefunction can then be compactly expressed as a Slater
determinant

ψ =
1
N!

� �1
2

ψ s 1ð Þ x1ð Þ ψ s 1ð Þ x2ð Þ � � � ψ s 1ð Þ xNð Þ
ψ s 2ð Þ x1ð Þ ψ s 2ð Þ x2ð Þ � � � ψ s 2ð Þ xNð Þ

..

. ..
. . .

. ..
.

ψ s Nð Þ x1ð Þ ψ s Nð Þ x2ð Þ � � � ψ s Nð Þ xN1ð Þ

0
BBBBB@

1
CCCCCA

ð21.1.3Þ

21.2 BOHR MODEL

In Rutherford scattering, heavy, ionized alpha particles (charged helium ions) scatter
through Coulomb interactions with positive nuclei. The resulting discovery of a point-
like nuclear structure motivated the Rutherford model in which bound electrons
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describe classical orbits around the nuclei. However, radially accelerating electrons
should lose their energy through electromagnetic radiation within microscopic time
scales. In the Bohr model of an atom, the electron was therefore postulated to occupy
a stationary state. Electromagnetic radiation with energy

hf =ℏω=E1−E2 ð21.2.1Þ

would then only be emitted or absorbed only through transitions between two
states with energies E1 and E2. To justify these assumptions, wavelike electrons
are assigned a phase that changes over stationary circular orbits by an integer
multiple of 2π, i.e., since Δϕ = kΔx,

Þ
kdr = 2πrk = 2πn or p =mev = ℏk = ℏn=r. The

radius of the smallest, n = 1 hydrogen atom electron orbit is termed the Bohr radius,
r = aB. The radius, an,Z,B, of the nth orbit for a hydrogen-like atom with a nucleus
with Z protons is obtained by equating the Coulomb and centrifugal forces on the
electron:

mev2

an,B
=

Ze2

4πε0a2n,B
ð21.2.2Þ

With mev≡ nℏ=an,Z,B,

an,Z,B =
4πε0
Ze2me

m2
ev

2a2n,Z,B =
4πε0ℏ2n2

Ze2me
ð21.2.3Þ

In terms of the dimensionless fine structure constant that in all systems of units equals

α=
e2

4πε0ℏc
≈

1
137:04

Q2D
2�force
Q2

1
T �energy

T

D

� �
=

1
137:04

D�force
energy

� �
=

1
137:04

ð21.2.4Þ

and with hc = 1.24 eVmicron (ℏc = 0.395 eVmicron) and mec
2 = 0.5109MeV =

5.109 × 105 eV,

an,Z,B =
n2aB
Z

ð21.2.5Þ

where the Bohr radius is given by, with 1 Å = 10−10 m (angstrom),

aB =
ℏ

αmec
= 137

ℏ
mec

� �
= 137 × 3:9 × 10−13 m= 0:53 Å ð21.2.6Þ

Sinceinaninversesquare-laworbitthekineticenergyis–1=2 times the potential energy, the
electron binding energy in the nth Bohr orbit is half the potential energy, namely,
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En−E∞ = −
1
2

Ze2

4πε0
n2aB
Z

� � = −
1
2

Ze2

4πε0
n2ℏ

αmecZ

� �

= −
1
2

Z2αmec
2 e2

4πε0ℏc

� �zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{α

n2
= −

1
2
me αcZð Þ2

n2
= −13:6

Z

n

� �2
eV

ð21.2.7Þ

The quantity Ry ≡me αcð Þ2=2 =ℏ=2a2Bme =mee4=2 4πε0ℏð Þ2 = 13:6 eV is termed the
Rydberg energy and equals half of the Hartree energy.

21.3 ATOMIC SPECTRA AND X-RAYS

The atomic spectral lines of an (e.g., thermally) excited atom result from transitions
between different quantum states. The emission and absorption frequencies are given
in the Bohr model by Equation (21.2.1),

f12 =
E1−E2

h
=
Z2Ry

h

1

n21
−
1

n22

� �
ð21.3.1Þ

with associated vacuum wavelengths (λ0)12 = c0=f12. A transition from the highest
(n2 =∞) to the lowest (n1 = 1) energy level in a hydrogen atom yields an ultraviolet
with frequency 13.6 × 1.6 × 10−19=6.6 × 10−34 = 3.3 × 1015 Hz, for which λ0 = 3.0 ×
108=3.3 × 1015 = 9.1 × 10−7m or 9.1 × 10−1 μm= 910 nm = 9100 Å (for visible light
λ0 = 0.2 − 0.8 μm). The inner shell electron binding energies of an atom increases
with its atomic number. These electrons can be displaced from their atomic states
through collisions with electrons or ions that have been accelerated by an electric field.
Subsequent electron transitions to the vacant states generate X-rays that decay by
interacting with heavy particles. Soft and hard X-ray wavelengths typically range
from 1–100 Å to 0.1–1 Å, respectively.

21.4 ATOMIC UNITS

Expressing energy and length in terms of the Hartree energy and the Bohr radius,
respectively, removes the explicit dependence of the Schrödinger equation on phys-
ical constants. With x0 = x=aB,

−
ℏ2

2mea2B

∂2ψ

∂x02
= −

2Ry

2
∂2ψ

∂x02
= E−Uð Þψ ð21.4.1Þ
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Substituting E0 = E=2Ry and U0 =U=2Ry yields Schrödinger equation in atomic units:

−
1
2
∂2ψ

∂x02
= E0−U0ð Þψ ð21.4.2Þ

The time-dependent Schrödinger equation similarly becomes

−
1
2
∂2ψ

∂x02
+U 0ψ = i

∂ψ

∂t0
ð21.4.3Þ

in terms of the dimensionless variable t 0 = t(2Ry=ℏ) = t=t0 with t0 = ℏ=2Ry = 2.42 ×

10−17 s. The derivatives in Equation (21.4.3) are of order unity over atomic time
and length scales, indicating that electron wavefunctions in an atom are appreciable
over distances of the order of the Bohr radius, while its wavefunction varies signif-
icantly in phase and possibly amplitude over times of approximately 10−17 s.

Atomic units are equivalent to settingme = e = ℏ = 4πε0 = 1, so that charge and mass
are expressed in units of the electronic charge, Q0 =Q=e, and mass, m0 =m=me. Since
aB = 4πε0ℏ

2=e2me = 1 and 2Ry =ℏ
2=a2Bme = 1, as required, the units of distance and

energy then equal the Bohr radius and Hartree energy. Additionally, the time unit
ℏ=2Ry = 1, while the ratio of the distance and time units, aB=(ℏ=2Ry) = ℏ=aΒme =
e2=ℏ4πε0 = αc = 1, demonstrates that the speed of light is 1=α = 137.

21.5 ANGULAR MOMENTUM

The components of the angular momentum operator, L
!
= r

! × p
!, obey the commuta-

tion relations [Li, Lj] = iℏεijkLk and


L
!
,L2
�
= 0. Hence, unless L

!
= 0, simultaneous

eigenfunctions of, e.g., both Lz and Lx do not exist, while spherical harmonic eigen-
functions Ylm(θ, φ) = hθ, φj l,mi of both L2 and Lz can be constructed with

L2 l,mj i=ℏ2l l + 1ð Þ l,mj i
Lz l,mj i=ℏm l,mj i ð21.5.1Þ

as described in Section 13.3. If the Hamiltonian depends only on L2, then H,L
!h i
= 0

and angular momentum is conserved.

Example

In the l = 1 basis j1, 1i, j1, 0i, and j1, − 1i, L! is represented by

Lz =ℏ

1 0 0

0 0 0

0 0 −1

0
B@

1
CA, Lx =

ℏffiffiffi
2

p
0 1 0

1 0 1

0 1 0

0
B@

1
CA, Ly =

iℏffiffiffi
2

p
0 −1 0

1 0 −1

0 1 0

0
B@

1
CA ð21.5.2Þ
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satisfying [Li, Lj] = iℏεijkLk. Thus, for the eigenvector 2,1,2ð ÞT= ffiffiffi
9

p
of Lx corre-

sponding to the superposition 2 1,1j i + 1,0j i+ 2 1, −1j ið Þ= ffiffiffi
9

p
, l = lx = 1. The raising

and lowering operators

L + = Lx + iLy =
ffiffiffi
2

p
ℏ

0 1 0

0 0 1

0 0 0

0
BB@

1
CCA, L− =Lx− iLy =

ffiffiffi
2

p
ℏ

0 0 0

1 0 0

0 1 0

0
BB@

1
CCA ð21.5.3Þ

transform j1, 0i = (0, 1, 0)T into
ffiffiffi
2

p
ℏ 1,1j i and ffiffiffi

2
p

ℏ 1, −1j i, respectively.

21.6 SPIN

A particle wavefunction in general can depend on additional internal variables such as
spin that are associated with its intrinsic structure. The overall wavefunction is then the
product of the spatial and spin wavefunctions. As first suggested by the Stern–Gerlach
experiment in which a beam of electrons passing through a nonuniform magnetic field
was found to deflect into two beams corresponding to S

B
!= ±ℏ=2, a particle with spin s,

the component of the spin angular momentum along an applied magnetic field pos-
sesses eigenvalues s, s − 1,…, − s, in analogy to the m angular momentum quantum
number. For an electron with spin ½ represented by a two-dimensional vector of unit
magnitude with components js, szi given by j1=2, 1=2i = (1, 0)T and j1=2, − 1=2i =
(0, 1)T, the spin operator S

!
=ℏ σ!=2 where the Pauli matrices

σx =
0 1

1 0

 !
, σy =

0 − i

i 0

 !
, σz =

1 0

0 −1

 !
ð21.6.1Þ

satisfy the angular momentum commutation relation

σi, σj

 �

= 2iεijkσk ð21.6.2Þ

which can be abbreviated as σ! × σ
! = 2i σ!which together with σiσj + σjσi = 2δij yields

σ
!�A!
� 

σ
!�B!
� 

= A
!�B!
� 

I + i σ!� A
!
× B

!� 
ð21.6.3Þ

The expectation value of the spin vector s! in the state, jγi = (u, d)T, is then given by

γh j S! γj i, i.e., the x spin component hγjSxjγi = ℏ(u*d + d*u)=2. The spin raising and
lowering operators are then obtained from

S + = Sx + iSy =ℏ
0 1

0 0

 !
, S− = Sx− iSy =ℏ

0 0

1 0

 !
ð21.6.4Þ
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Additionally, the expectation value of S2 = S2x + S
2
y + S

2
z =ℏ

2s s+ 1ð ÞI, where I denotes
the 2s + 1 × 2s + 1 unit matrix, for a state of spin s equals ℏ2s(s + 1).

21.7 INTERACTION OF SPINS

To illustrate the interaction of spins or angular momenta, consider the spins in the lowest
state of a helium atom with zero orbital angular momentum. The spins are clearly par-
allel in the two states jstotal, stotal,zi = j1, 1i = j " i1j " i2 and j1, − 1i = j # i1j # i2 where
j " i = (1, 0)T, j # i = (0, 1)T for which (S1,z + S2,z)j " i1j " i2 = (S1,zj " i1)j " i2 + j " i1
(S2,zj " i2) = ℏj " i1j " i2 while the magnitude of the total spin angular momentum,

S
!
total = S

!
1 + S

!
2, equals

S2total = S
2
1 + S

2
2 + 2S1�S2

= S21 + S
2
2 + 2S1,zS2,z + 2S1,xS2,x + 2S1,yS2,y

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
2 S1 + + S1−ð Þ S2 + + S2−ð Þ− S1 + −S1−ð Þ S2 + −S2−ð Þ½ �

= S21 + S
2
2 + 2S1,zS2,z + S1 + S2− + S1−S2 +

ð21.7.1Þ

with an expectation value of ℏ2(3=4 + 3=4 + 1=2 + 0 + 0) = ℏ2stotal(stotal + 1) = 2ℏ
when applied to j " i1j " i2 and j # i1j # i2, both of which are symmetric upon inter-
change of the two electron spins. Accordingly, these form a spin triplet of stotal = 1
states together with the similarly symmetric m = 0 combination of spin-up and
spin-down states, 1,0j i= "j i1 #j i2 + #j i1 "j i2

� �
=
ffiffiffi
2

p
, which can be obtained by apply-

ing the lowering operator to the stotal = 1, mtotal = 1 state according to

Stotal, − 1,1j i= S1, − "j i1
� � "j i2 + "j i1 S2, − "j i2

� �

=
ffiffiffi
2

p
ℏ 1,0j i=ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stotal + stotal,zð Þ stotal−stotal,z + 1ð Þ

p
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + 1ð Þ 1−1 + 1ð Þ
p

1,0j i ð21.7.2Þ

The spatial wavefunction of the spin triplet states is then antisymmetric such that
the overall fermion wavefunction is antisymmetric. The antisymmetric spin wave-
function 0,0j i = "j i1 #j i2− #j i1 "j i2

� �� ffiffiffi
2

p
thus corresponds to the m = 0, S = 0 spin

singlet state with

S2total 0,0j i = ℏ2

4
3 + 3ð Þ 0,0j i+ 1ffiffiffi

2
p S1, −S2, + "j i1 #j i2−S1, + S2, − #j i1 "j i2
� �

=
ℏ2

4
6 + 2 + 1ð Þ −1ð Þð Þ 0,0j i + ℏ2ffiffiffi

2
p #j i1 "j i2− "j i1 #j i2
� �

=ℏ2 0,0j i−ℏ2 0,0j i= 0

ð21.7.3Þ
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Thus, if two spins are coupled through the interaction of the spin of each electron

to the magnetic field of the other electron, ΔU = 2cS
!
1 � S

!
2 = c S2total−S

2
1−S

2
2

� �
and all

three spin triplet states are shifted by the same amount in energy relative to the spin

singlet. Just as the spin–spin interaction yields a potential that depends on the total

spin, if two particles, i = 1, 2, each of whose spin and orbital momentum are strongly

coupled to form a total particle angular momentum j
!
i, the interaction between the j

!
i

generates a term j
!
1 � j

!
2 = c

0 J2total− j
2
1− j

2
2

� �
in the Hamiltonian. The total angular momen-

tum values then range from Jtotal = j1 + j2 to Jtotal = j j1 − j2jwhere 2Jtotal + 1 associated

wavefunctions with differing mtotal =m1 +m2 (generalizing the triplet and singlet

states) exist for each value of Jtotal. A wavefunction jJtotal,mtotali is comprised of

a linear combination of wavefunctions j j1,m1ij j2,m2i with jm1j ≤ j1, jm2j ≤ j2 and

mtotal =m1 +m2. The Clebsch–Gordan coefficients in these superpositions are

generally referenced from tables.

21.8 HYDROGENIC ATOMS

The spatial state of hydrogenic atoms is described by products of angular and radial
wavefunctions. The kinetic energy of the atom equals the sum of the kinetic energy of
the center of mass of the electron and nucleus and the energy about the center of mass.
In terms of center of mass and relative coordinates

r
!
r = r

!
2−r

!
1, r

!
cm =

m1r
!
1 +m2r

!
2

m1 +m2
ð21.8.1Þ

the x1 derivative in Schrödinger equation, T +Uð Þψ = −ℏ2=2 r2
1=m1 +r2

2=m2

� �
+U


 �
ψ

=Eψ , equals

∂2

∂x21
=

∂xcm
∂x1

∂

∂xcm
+
∂xr
∂x1

∂

∂xr

� �2

=
m1

m1 +m2ð Þ
∂

∂xcm
−

∂

∂xr

� �2

=
m1

2

m1 +m2ð Þ2
∂2

∂xcm2
−2

m1

m1 +m2ð Þ
∂2

∂xcm∂xr
+

∂2

∂x2r

ð21.8.2Þ

With the corresponding expression for ∂2=∂x22 obtained with the transformation
xr! −xr, 1$ 2,

1
m1

∂2

∂x21
+

1
m2

∂2

∂x22
=

1
m1 +m2ð Þ

∂2

∂x2cm
+

1
mr

∂2

∂x2r
ð21.8.3Þ
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in which mr =m1m2=(m1 +m2) denotes the reduced mass. Incorporating the y and z
derivatives,

ℏ2

2 m1 +m2ð Þr
2
cm +

h2

2mr
r2

r +U r
!
r

� �� �
ψ r

!
cm, r

!
r

� �
=Eψ r

!
cm, r

!
r

� � ð21.8.4Þ

By separation of variables with ψ r
!
cm, r

!
r

� �
= exp

�
ik
!
cm�r!cm

�
ψ r r

!
r

� �
, the radial wave-

function obeys

−
ℏ2

2mr
r2

r +U rrð Þ
� �

ψ r r!r
� �

= E−
ℏ2k2cm

2 m1 +m2ð Þ
� �

ψ r r!r
� �

≡Erψ r r!r
� � ð21.8.5Þ

The Schrödinger equation for the relative motion in spherical coordinates is then,
omitting the subscript r,

−
ℏ2

2m
r2 +U rð Þ

� �
ψ r

!� � = −
ℏ2

2m
∂2

∂r2
+
2
r

∂

∂r
−

L2

ℏ2r2

 !
+U rð Þ

0
@

1
Aψ r

!� � =Eψ r
!� �

ð21.8.6Þ

with L2 here given by ℏ2 multiplied by Equation (13.3.5). Separating variables accord-
ing to ψ r

!� �=Rnl rð ÞYlm θ,φð Þ with n the radial quantum number yields

−
ℏ2

2m
∂2

∂r2
+
2
r

∂

∂r
−
l l+ 1ð Þ
r2

 !
+U rð Þ

0
@

1
ARnl rð Þ=EnlRnl rð Þ ð21.8.7Þ

For the l =m = 0 ground state of a hydrogenic atom, the above equation becomes
with me≈mr

∂2

∂r2
+
2
r

∂

∂r
+
2meZe2

ℏ24πε0r

 !
R00 rð Þ= ∂2

∂r2
+
2
r

∂

∂r
+
2Z
aBr

 !
R00 rð Þ= −

2meE00

ℏ2 R00 rð Þ

ð21.8.8Þ

The terms containing 1=r cancel for R00(r) = 2(Z=aB)exp(−rZ=aB), which is normal-
ized according to

Ð
V (R00(r))

2dV = 1, yielding an energy eigenvalue E00 = −ℏ2Z2=2
mea2B = −Z2Ry. The general radial eigenfunctions possess the form Rnl = exp(−rZ=
naB)r

lpnl(r) where pnl(r) is a polynomial of order n − l − 1. Accordingly, only the
l = 0 wavefunctions that do not experience a centrifugal repulsion differ from zero
at the origin. The mz = 0 wavefunctions are elongated (for l 6¼ 0) along the z-axis,
while for larger values of jmzj, for fixed l, the direction of elongation tilts toward
the x − y plane.
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21.9 ATOMIC STRUCTURE

From the properties of the angular wavefunctions, for each atomic radial quantum
number n, the angular quantum number l varies from 1 to n, while for each l, the azi-
muthal quantum number m varies from −l to l. For a hydrogen atom, energy levels

with the same value of n are degenerate with energies given by the Bohr model as
a result of the particular symmetry of the 1=r potential. Any perturbation that does
not also vary as 1=r therefore reduces the energy level degeneracy. Similarly, in clas-
sical mechanics, elliptical planetary orbits in a 1=r potential are stationary; forces that
do not vary as 1=r2 induce precession.

At zero temperature, atomic electrons occupy the lowest available energy levels sub-
ject to the Fermi exclusion principle that only one spin-up and one spin-down electron
can be present in each atomic energy level. In all atoms except hydrogen, electron–
electron repulsion removes the 1=r symmetry, and small l states typically possess a
lower energy than large l states with the same n. In chemical notation, the distribution
of electrons in an atom is abbreviated by nl2m where the l = 0, 1, 2,… states are desig-
nated instead as l = s, p, d,…. The order in which these states are filled is given by

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 5d10
� �2

4f 12 5d10
� �8

6p6… ð21.9.1Þ

21.10 SPIN–ORBIT COUPLING

The period, T, of a charge qmoving at a constant speed v in a circular orbit of radius R

equals 2πR=v, yielding an effective current (charge per unit time) I = q=T = qv=2πR

and magnetic moment, where A
!
is the area vector,

μ! = IAê
A
!=

q

2πR
πR2
� �

ê
R
!× v!=

q L
!

2m
≡ γ L

! ð21.10.1Þ

where γ is termed the gyromagnetic ratio. The resulting interaction between the

particle and a magnetic field is described by H = − μ
!�B!.

In contrast to a spinless charge, an electron possesses a magnetic moment μ!e = γe S
!
=

−gee=2með Þ S! = −geμB S
!
=ℏ where the electron g-factor ge≈ 2 as a result of relativ-

istic and quantum mechanical effects and μB = eℏ=2m is labeled the Bohr magneton.

From the Heisenberg equation of motion, S
!
accordingly evolves in time as

dS
!

dt
=

1
iℏ

S
!
,Hspin-field

h i
= −

1
iℏ
γe S

!
, S

!�B!
h i

ð21.10.2Þ

Since

Bj Si, Sj

 �

=
ℏ2

4
Bj σi, σj

 �

= i
ℏ2

2
εijkBjσk = iℏ B

!
× S

!� 
i

ð21.10.3Þ
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Equation (21.10.2) can be rewritten as (with q = −e < 0)

dS
!

dt
= γe S

!
× B

!
= μ!e × B

! ð21.10.4Þ

The spin of an electron thus precesses (circles) around the magnetic field direction
with an angular velocity proportional to the field strength ω = −γeB = gωcyclotron=2
with the cyclotron frequency ωcyclotron = eB=me.

In paramagnetic resonance, atoms are placed in a constant z-directed magnetic
field while a weak sinusoidal magnetic field is applied in a perpendicular direction.
The sinusoidal component can be decomposed into the sum of right- and left-handed
circularly polarized magnetic fields. If the angular velocities of one of these matches
that of the spin vector precession, e.g., for a hydrogen atom −γeBz, it appears as a small
static magnetic field in the frame of the rotating spin. Therefore, the spin is rotated in
the plane defined by its instantaneous direction and the z-axis, yielding a transition
between the low energy state in which the spin is aligned along the applied DC mag-
netic field and an antialigned state. The resulting transition radiation can be directly
measured.

The magnetic interaction energy of an electron in an atom moving with a velocity
v
! in the electric field of the other atomic particles is—where the additional factor of
½ arises from a relativistic effect termed Thomas precession—

ΔE = −
1
2
μ
!
e � B

!
= −

1
2

e

2me
g S

!
� �

� v
!× E

!

c2
ð21.10.5Þ

For a hydrogen-like atom with g = 2,

ΔE = −
1
2

eg

2me
S
!

� �
� me v

!� �
× r

!

mec2
Ze

4πε0r3

� �
=

Z

8πε0r3
e2

m2
ec

2
S
!� L!≡ cspin-orbit

1
r3
S
!� L!

ð21.10.6Þ

This spin–orbit coupling term can be evaluated by noting that since J
!
= S

!
+ L

!
,

S
!� L! =

1
2

J2−L2−S2
� � ð21.10.7Þ

requiring the specification of an atom state by its simultaneous j, l, and s quantum
numbers. With the notation 2S + 1LJ for a hydrogen atom, the 1s ground state is denoted
2S1/2, while the first group of degenerate excited states consists of the

2S1/2 n = 2, l = 0
and n = 2, l = 12P1/2, and

2P3/2 states. The spin–orbit interaction raises and lowers
the energies of the 2P3/2 and

2P1/2 states, respectively, but does not affect the
2S1/2

state energy for which S
!� L! = 0. However, the relativistic correction to the electron

kinetic energy,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 +m2c4

p
−mc2−

p2

2m
=mc2 1 +

1
2

p2

m2c2
+
1
2!

1
2

� �
−
1
2

� �
p4

m4c4

� �
+ � � �

� �

−mc2−
p2

2m

≈ −
p4

8m3c2
ð21.10.8Þ

for hydrogen-like atoms, which can be evaluated in first-order perturbation theory,
restores the degeneracy of the 2S1/2 and

2P1/2 states, while the 2P3/2 level possesses
a slightly higher energy. A further quantum electrodynamics correction, the Lamb
shift, then removes the degeneracy of the 2S1/2 and

2P1/2 by a minute amount.

Example

For L = 0 hydrogenic states, J = S, while

1
2

J2− L2− S2
� � j= l +

1
2
, l,

1
2

����
�

j = l−
1
2
, l,

1
2

����
�

8>>>><
>>>>:

9>>>>=
>>>>;

=
ℏ2

2

l+
1
2

� �
l +

3
2

� �
− l l + 1ð Þ− 1

2
�3
2

� �
l+

1
2
, l,

1
2

����
�

l−
1
2

� �
l +

1
2

� �
− l l + 1ð Þ− 1

2
�3
2

� �
l−

1
2
, l,

1
2

����
�

8>>>><
>>>>:

9>>>>=
>>>>;

=
ℏ2

2

l l+
1
2
, l,

1
2

����
�

− l+ 1ð Þ l− 1
2
, l,

1
2

����
�

8>>>><
>>>>:

9>>>>=
>>>>;

ð21.10.9Þ

Thus, in first-order perturbation theory, the spin–orbit-induced energy change
is δEj = hψn,j,l,1/2jHsojψn,j,l,1/2i = cspin-orbitℏ

2L(l)hRnlj(1=r3)jRnli=2 where L(l) = l
for J = l + 1=2 and −(l + 1) for J = l − 1=2.

Finally, hyperfine structure arises from the magnetic field of the nuclear magnetic

dipole moment, resulting in a perturbation e L
!
+ 2 S

!� 
�B!=2m, where B! is proportional

to the nuclear spin, S
!
nuclear. For L = 0 states, the interaction is proportional to S

!� S!nuclear,
which as in the spin–orbit case can be written as

Stotal(Stotal + 1) − S(S + 1) − Snuclear(Snuclear + 1) with S
!
total = S

!
+ S

!
nuclear

21.11 ATOMS IN STATIC ELECTRIC AND MAGNETIC FIELDS

The change in an atomic Hamiltonian induced by an external z-directed electric field is
given by

ΔH0 =ΔU = −F
! � r! = e E

! � r! = eEzz ð21.11.1Þ
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An unperturbed nondegenerate wavefunction is jψmi either symmetric or antisymmet-

ric with respect to reflection in the x − y plane. However, in both cases, the product of

ΔH0 with the symmetric squared wavefunction in the formula for the first-order

energy shift δE 1ð Þ
m = ψ 0ð Þ

m

� ��H0 ψ 0ð Þ
m

�� �
= 0 with Equation (21.11.1) after integration over

all space. Since δE = − p
! �E!, with p! as the dipole moment, this further establishes that

an atom in a nondegenerate state cannot possess a permanent dipole moment. How-
ever, second-order perturbation theory incorporates the asymmetric distortion in the
wavefunction induced by the electric force. The magnitude of the contributions to the
energy shift from above and below the z = 0 plane then differs, resulting in a ground
state Stark shift:

δE 2ð Þ = e2E2
z

X
m> 0

ψ 0ð Þ
0

D ���z ψ 0ð Þ
m

�� ���� ���2
E 0ð Þ
0 −E 0ð Þ

m

ð21.11.2Þ

If ψ 0ð Þ
m is degenerate with a second state, ψ 0 0ð Þ

m , with opposite parity under
reflection, the first-order energy shift of the state does not vanish (as the sum of a
symmetric and an antisymmetric function possesses neither symmetry), yielding a

permanent dipole moment. That is, δE 1ð Þ
m = c1ψ 0ð Þ

m + c2ψ 0 0ð Þ
m

D ���H 0 c1ψ 0ð Þ
m + c2ψ 0 0ð Þ

m

��� E
=

2Re c1*c2 ψ 0ð Þ
m

� ��z ψ 0
m

0ð Þ
��� Eh i

6¼ 0 since the product of ψ 0ð Þ
m with z possesses the same

parity under reflection as ψ 0 0ð Þ
m . The coefficients ci are obtained from degenerate

perturbation theory.

Example

For the n = 2 levels of the hydrogen atom, ψ200 = R20(r)j0, 0iwith angular depend-
ence Y00 = 1=

ffiffiffiffiffi
4π

p
, ψ211 = R21(r)j1, 1i, ψ21 − 1 with angular variation Y1 ± 1(θ, ϕ)/

sin θ exp(±iϕ) = (x ± iy)=r, and ψ210� Y10(θ, ϕ)/ cos θ = z=r are degenerate. An
electric field reduces the spherical symmetry of the 1=r potential to a two-
dimensional cylindrical rotational symmetry, resulting in a twofold degeneracy.

Indeed, superimposing to leading order in E
!��� ��� the angularly invariant l =m = 0 state

with the cos θ variance of the l = 1,m = 0 state with a 0 or 180� relative phase shift
generates orthogonal wavefunctions with a maximum toward or against the
direction of the electric field. These are, respectively, lowered and raised in
energy relative to the two jmj = 1 states, which instead vary as sin θ and therefore
do not change the average electron position in the field direction to first order.
Mathematically, for m0 6¼m, the matrix elements of eEzz equal zero since from
[eEzz, Lz] = 0 (as Lz only contains x and y derivatives),

0 = ψn, l,m

� �� z, Lz½ � ψn0, l0,m0
�� �

= ψn, l,m

� �� zLz−Lzzð Þ ψn0 , l0,m0
�� �

= m0−mð Þ ψn, l,m

� ��z ψn0 , l0,m0
�� � ð21.11.3Þ
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For the two m = 0 states, direct integration yields hψ200jzjψ210i = hψ210jzjψ200i =
−3aB, resulting in the eigenvalue equation in degenerate perturbation theory:

−3eEzaB
0 1
1 0

� �
c1
c2

� �
= δE

c1
c2

� �
ð21.11.4Þ

The antisymmetric and symmetric eigenvectors are accordingly c1 = −c2 = 1=
ffiffiffi
2

p

with eigenvalue 3eEzaB and c1 = c2 = 1=
ffiffiffi
2

p
with eigenvalue −3eEzaB.

If the coupling energy of two spins or angular momentum components, A
!
1 and A

!
2,

sufficiently exceeds that of the individual spins with an external B
!
field, the field inter-

action must be evaluated between coupled angular momenta eigenstates while in the
opposite case, the levels are eigenstates of the individual components. In a constant
magnetic field Bêz, atomic energy levels undergo Zeeman splitting into closely spaced
groups of levels that differ by the projections of the spin and angular momentum onto
the field axis. The magnetic field interaction energy is generally far smaller than the
spin–orbit interaction energy, so that the energy level shift of the state j j,mji is deter-
mined to first order by the matrix element (the factor of 2 before S

!
results from ge≈ 2

for electrons):

e

2me
j,mj

� �� L
!
+ 2 S

!� 
�B! j,mj

�� �
=

eB

2me
j,mj

� �� Jz + Szð Þ j,mj

�� �

=
eB

2me
ℏmj + j,mj

� ��Sz j,mj

�� �� � ð21.11.5Þ

The matrix element of Sz in the above expression can be evaluated by inserting the
expressions for j j,mji in terms of the eigenstates jl,ml, s,msi. A simplified semiclas-

sical procedure models L
!
and S

!
as vectors that precess rapidly around J

!
. After time

averaging, only the component of S
!
in the direction of J

!
remains, and h j,mjjSzj j,mji

can be replaced by

j,mj

� ��Sz j,mj

�� �
= j,mj

� ��êz � J
!S �J
J2

� �
j,mj

�� �

=ℏmj j,mj

� ��J2 + S2−L2
2J2

j,mj

�� �

=ℏmj

j j + 1ð Þ+ 3
4
− l l+ 1ð Þ

2j j+ 1ð Þ

ð21.11.6Þ
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Each unperturbed energy level is therefore split into a set of levels that differ
according to mj:

ΔE 1ð Þ
magnetic, j =

eBℏ
2me

mj 1 +
j j+ 1ð Þ+ 3

4 − l l + 1ð Þ
2j j+ 1ð Þ

� �
ð21.11.7Þ

The Hamiltonian for an electron in an electromagnetic field is obtained with p
!!

− iℏr! in Equation (18.8.32) when the interaction of the electron spin with the field is
neglected:

iℏ
∂ψ r

!, t
� �
∂t

=
1

2me
− iℏr! + e A

!
r
!, t
� �� 2

−eV r
!, t
� �� �

ψ r
!, t
� � ð21.11.8Þ

Equation (21.11.8) is preserved under the gauge transformation, V r
!, t
� �!V r

!, t
� �

+

∂Λ r!, t
� �

=∂t, A
!

r!, t
� �!A

!
r!, t
� �

− r! Λ r!, t
� �

if

ψ r!, t
� �!ψ r!, t

� �
ei

e
ℏΛ r, tð Þ ð21.11.9Þ

as evident from

− iℏr! + e A
!
r
!
, t

� �
−er! Λ r, tð Þ

� 
ψ r

!
, t

� �
ei

e
ℏΛ r, tð Þ

h i
= ei

e
ℏΛ r, tð Þ − iℏr! + e A

!
r
!
, t

� �� 
ψ r

!
, t

� �

iℏ
∂

∂t
+ eV r

!, t
� �

+ e
∂Λ r, tð Þ

∂t

� �
ψ r

!, t
� �

ei
e
ℏΛ r, tð Þ

h i
= ei

e
ℏΛ r, tð Þ iℏ

∂

∂t
+ eV r

!, t
� �� �

ψ r
!, t
� �

ð21.11.10Þ

In a constant magnetic field B=Bêz and a gauge for which A
!
= 0,Bx,0ð Þ (recall

B
!
=r! × A

!
for static fields)

Hψ r
!, t
� �

=
1

2me
p2x + p

2
y + p

2
z + 2eBxpy + e

2B2x2
� � �

ψ r
!, t
� �

=Eψ r
!, t
� � ð21.11.11Þ

Since [H, py] = [H, pz] = 0, simultaneous eigenfunctions of py, pz andH exist. If py and

pz are constants of the motion, −iℏ∂ψ=∂y = pyϕ and −iℏ∂ψ=∂z = pzϕ with p
! =ℏ k

!
.

Consequently, setting

ψ r
!� �= ei kyy + kzzð Þϕ xð Þ ð21.11.12Þ
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yields

1
2me

−ℏ2 d
2

dx2
+ e2B2 x+

ℏky
eB

� �2
 !

ϕ xð Þ= E−
ℏ2k2z
2me

� �
ϕ xð Þ≡E0ϕ xð Þ ð21.11.13Þ

If the particle motion is confined to the x − y plane, kz = 0 and the above equation
describes a harmonic oscillator with equilibrium position xB = −ℏky=eB, implying
ky = −eBxB=ℏ and potential, mω2x02=2, given by e2B2x02=2me, with x0 = x − xB. Hence,
the eigenenergies are with integer N

E0
N =

ℏeB
me

N +
1
2

� �
=ℏωcyclotron N +

1
2

� �
ð21.11.14Þ

with ωcyclotron as the cyclotron frequency (Equation (18.9.10)). Semiclassically,

equating magnetic and centrifugal forces, evB =mev
2=r, yields p =mev = erB. The

WKB condition,
Þ
krdθ =

Þ
(p=ℏ)rdθ = 2(N + 1=2)π, then implies r2 = (N + 1=2)

ℏ=eB. As the energy in a circular orbit equals twice the kinetic energy, EN = p2=me

= r2(eB)2=me = (N + 1=2)ℏeB=me.
ThenonrelativisticPauli equation additionallydescribes the interactionof electron spin

with the magnetic field. In an explicitly gauge-invariant form, the equation is written as

− iℏ
∂φ

∂t
=

1
2m

σ
!� p

!
−
e

c
A
!� � 2

+ eU

� �
φ ð21.11.15Þ

where φ represents a two-component spinor. Applying the formula
�
σ
! �A! �� σ! �B!� =

A
! �B! + i σ!��A! × B

!�
together with, where the subscript indicates the expression

upon which the operator acts, p!A × A
!
= − iℏB

!
and

�
p
! × A

!
+ A

!
× p

!�
φ =

�
p!A × A

!
−

A
!
× p!φ + A

!
× p!φ

�
φ= − iℏB

!
φ yields the terms of Equation (21.11.8) together with

the additional coupling term, Equation (21.10.5), with g = 2 and without the relativ-
istic factor of ½.

21.12 HELIUM ATOM AND THE H +
2 MOLECULE

The Fermi exclusion principle generates an effective spin–spin interaction among
electrons in an atom or molecule. For example, the Hamiltonian of a two-electron
helium atom for which Z = 2 is given by

H =H0 r1ð Þ+H0 r2ð Þ+HI r!1−r
!
2

� �
=
p21 + p

2
2

2me
−

Ze2

4πε0

1
r1

+
1
r2

� �
+

e2

4πε0

1

r
!
1−r

!
2

�� ��
ð21.12.1Þ
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The last termdescribes theCoulomb interaction potentialHI r
!
1−r

!
2

� �
between electrons.

For HI = 0, the total wavefunction factors into a product of the two individual electron
wavefunctions. In the ground state, both electrons occupy the lowest-order spatial state,
yielding a symmetric spatial and therefore antisymmetric spin wavefunction
ψ0 r

!
1, r

!
2

� �
=ψ100 r

!
1

� �
ψ100 r

!
2

� �
1,0j i− , with j1, 0i− the antisymmetric spin singlet state.

In the absence of HI, the noninteracting electrons together possess a binding energy
Ebinding = −2(mc2α2Z2=2) = −108.8 eV, while the lowest-order correction associated
with HI

ψ0 r
!
1, r

!
2

� �� ��HI r
!
1−r

!
2

� �
ψ0 r

!
1, r

!
2

� ��� �
=
ð
ρ0 r

!
1

� � ð
HI r

!
1−r

!
2

� �
ρ0 r

!
2

� �
d3r1

� �
d3r2

ð21.12.2Þ

where the electron density, ρ0 r
!� �= ψ100 r

!� ��� ��2, neglects the distortion of each electron
wavefunction resulting from the presence of the other electron

In the lowest He excited state, the electrons occupy different states, yielding for the
total wavefunction, where the upper and lower entries are associated with spin singlet
and triplet states, respectively,

ψ
singlet
triplet

n o r
!
1, r

!
2

� �
=

1ffiffiffi
2

p ψ100 r
!
1

� �
ψ210 r

!
2

� ��

±ψ100 r
!
2

� �
ψ210 r

!
1

� � 0,0j ispin singlet
1,1 or 0 or−1j ispin triplet

( )
ð21.12.3Þ

Evaluating the resulting interaction energy by employing the symmetry upon inter-
change of r!1 and r!2,

ΔE
singlet
triplet

n o =
e2

4πε0

ð ð
ψ100 r

!
1

� ��� ��2 ψ210 r
!
2

� ��� ��2 ±ψ100
* r

!
1

� �
ψ210
* r

!
2

� �
ψ210 r

!
1

� �
ψ100 r

!
2

� �
r
!
1−r

!
2

�� �� d3r1d
3r2

ð21.12.4Þ

Designating the direct and exchange interaction terms above by G and H, since
S2total = s

2
1 + s

2
2 + 2s

!
1�s!2 implies 2s!1�s!2=ℏ2 = σ!1�σ!2=2 = Stotal Stotal + 1ð Þ−3=2, which is

1=2 for triplet and −3=2 for singlet states, Equation (21.12.4) can be written as

ΔE =G−
1
2
1 + σ1� σ2ð ÞH ð21.12.5Þ

Hund’s rule postulates that states with largest total spin are the most spatially sym-
metric and therefore typically possess the lowest energies. This spin correlation
energy in certain substances considerably exceeds the spin–orbit interaction leading
to a large magnetic response.
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In the H+
2 ion with only a single bound electron, the electron wavefunction in

the electric field of protons at ± R
!
=2 satisfies, where the 1=R term arises from the

Coulomb repulsion of the protons,

−
ℏ2

2me
r2

r −
e2

4πε0

1

r
!
− R

!
=2

��� ���2
+

1

r
!+ R

!
=2

��� ���2
−
1
R

0
B@

1
CA

2
64

3
75ψ r

!,R
!� 

=Eψ r
!,R

!� 

ð21.12.6Þ

For large R, the electron is bound to a single atom with a binding energy of EB, while
for R! 0, the 1=R term diverges. The resulting Hamiltonian is symmetric with
respect to reflection in the perpendicular plane bisecting to the line joining the nuclei
so that the spatial wavefunction symmetry with respect to this transformation depends
on the spin state of the two neutrons. The Ritz variational method estimates the elec-
tronic ground state energy with a trial wavefunction composed from a symmetric or
antisymmetric superposition of hydrogenic wavefunctions:

ψa,s = c e−
1
aB

r−R
2j j ± e− 1

aB
r + R

2j j� 
ð21.12.7Þ

where aB denotes the Bohr radius. The nuclear separation with the highest binding
energy is found by minimizing hψa,sjHjψa,si=hψa,sj ψa,si with respect to the dimen-
sionless parameter R=aB. The result indicates that only the binding energy of the sym-
metric spatial state possesses a minimum as a function of R leading to molecular
bonding and a stable ion configuration.

A molecular wavefunction is a product of nuclear and electronic spin and spatial

wavefunctions that can typically be separated into vibrational, rotational, and electronic

states such that summing the energies of the individual excitations approximates the

total molecular energy. That is, if the potential between the two nuclei is approximated

by a parabolic function near its minimum, the nuclear motion forms a series of equally

spaced vibrational energy levels typically separated by a few electron volts. The rota-

tional motion of the molecule is associated with a term in the Hamiltonian of the form

H = L2=2I, yielding a spectrum of rotational energy levels with ΔEl = ℏ2l(l + 1)=2I.

Example

At low temperatures, the H2 molecule occupies its symmetric electronic and vibra-
tional ground states. As the nuclear spins are half-integral, the total wavefunction is
antisymmetric with respect to interchange of the nuclei. If the nuclei occupy the
nondegenerate stotal, nuclear = 0 odd spin state, their orbital momentummust accord-
ingly be even, while the three degenerate stotal, nuclear = 1 spin states require odd
orbital momentum. Thus, if H2 molecules are equally distributed among the spin
states through randomizing collisions at low temperature, odd orbital angular
momentum states will be three times as prevalent as even states.
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21.13 INTERACTION OF ATOMS WITH RADIATION

The electromagnetic interaction of an electron with an electric field Ezêz cos kx−ωtð Þ
possessing a time-averaged energy density

w=
�
E
! �D! + B

! �H! �= 2 = ε0 Ezj j2�2 contributes a term

H0 = eEzzcosωt ð21.13.1Þ
to the Hamiltonian. If the electron is initially in an eigenstate jni with energy En

and a second eigenstate jmi exists with energy Em = En + ℏωmn, transitions
between the two states are generated through the component eEzze

−iωt=2 of H0 if
ω =ωmn. Time-dependent perturbation theory approximates the resulting transition
rate by

2π
ℏ

e2E2
z

4
mh jz nj ij j2Ρ En +ℏωmnð Þ ð21.13.2Þ

in which the density of states function per unit energy and volume Ρ(En + ℏωmn)!
δ(Em − En − ℏωmn) for discrete states.

If the electromagnetic energy per unit volume in a frequency intervalΔω aboutωmn

equals w(ωmn)Δω, then in the corresponding energy interval (w(ωmn)Δω=ΔE)ΔE =
(w(ωmn)=ℏ)ΔE. Thus, replacing ε0E2

z ωmnð ÞΡ En +ℏωmnð Þ=2 in Equation (21.13.2) by
w(ωmn)=ℏ, the absorption rate in an unpolarized field where the average field energy
in each polarization direction is one-third the total energy (a dot product is implicit in
the squared matrix element below),

πe2

3ε0ℏ
2 mh j r!nj i�� ��2w ωmnð Þ ð21.13.3Þ

Alternatively, in the Coulomb gauge, a photon in a plane wave state can be repre-
sented as

A
!

r!, t
� �

=Ξ
X
i= 1,2

aiêie
i k

!�r!−ωt
� �

+ ai
*êie

− i k
!�r!−ωt
� �� �

≡Ξ a!ei k
!�r!−ωt
� �

+ a!
*
e− i k

!�r!−ωt
� �� �

ð21.13.4Þ
Here, Ξ and êi are a normalization factor and orthogonal unit vectors perpendicular

to the wavevector k
!
. With (A × B) � (C ×D) = (A � C)(B �D) − (A �D)(B � C) and

k2=ε0μ0 = c
2
ok

2 =ω2, the energy density

u =
ε0
2

−
∂ A

!

∂t

 !2
+

1
2μ0

r! × A
!� 2

=Ξ2 ε0ω2

2
a
!� a!* + 1

2μ0
k
!
× a

!
� 

� k
!
× a!

*
� 

+ c:c:

� �

=Ξ2 ε0ω2 a
!� a!* + c:c:

� 
ð21.13.5Þ
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from which the total energy in a volume V for the field of Equation (21.13.4) equals

2ε0ω
2jaj2Ξ2V. (Note that since for a plane wave B

!
× H

!
= E

!
× D

!
, the two terms above

coincide.) With jaj2 = 1 and Ξ specified such that u yields the energy of N photons
with energy ℏω within V,

A
!

r!, t
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏN

2ε0ωV

r X
i= 1,2

aiêie
i k

!�r!−ωt
� �

+ a*i êie
− i k

!�r!−ωt
� �� �

ð21.13.6Þ

In a full description, since the first and second term above increase and decrease
the energy of the system, a*i and ai are interpreted as operators a

+
i and a that increase

and decrease the number of photons in the polarization state êi by unity. The wave
function for a single-photon state with polarization ê

A
!

k
!
, ê
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ωε0V

r
êe− i k

!�r!−ωt
� �

ð21.13.7Þ

is then obtained by applying the modified version of Equation (21.13.6) to a state with
zero photons. The photon emission rate in a transition from a state jmi to jni resulting
from the interaction term e A

! � p!=m in the Hamiltonian is accordingly

2π
ℏ

e2

m2
e

ℏ
2ωε0V

nh je− ik
!�r!ê � p! mj i

��� ���2 ð21.13.8Þ

Electronic transitions typically occur between states separated by a few electron
volts. The resulting optical wavelength λ = h=p = hc=Ewhere, if λ and E are expressed
in microns and electron volts,

λ =
6:63 × 10−34 J �s½ �

E eV½ � 3 × 108
m
s

h i 1

1:6 × 10−19

J
eV

� �
106

μm
m

h i
=

1:24
E eV½ �
� �

μm½ �

ð21.13.9Þ
Hence, a transition between two states differing by 1 eV results in a photon of 1.24 μm
wavelength, which greatly exceeds the several angstrom spatial extent of the elec-

tronic wavefunction. Hence, k
!� r!≈aB=λ� 1 in Equation (21.13.8). The electric

dipole approximation accordingly replaces exp − i k
!� r!

� 
≈1− i k

!� r! + � � � and retains

only the leading nonzero term, which, since hnjmi = 0, is

nh je− ik
!�r!ê � p! mj i≈ nh jê � p! mj i = ime

ℏ
ê � nh j H, r!


 �
mj i= ime

En−Em

ℏ
ê � nh j r! mj i

ð21.13.10Þ
Consequently, Equation (21.13.8) becomes, with ω2 = (En − Em)=ℏ,

2π
ℏ

ℏ
2ωε0V

e2

m2
e

ω2 nh jê � r!mj i�� ��2 = 2π
ℏ
e2ℏω
2ε0V

nh jê � r!mj i�� ��2 ð21.13.11Þ
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Since ℏω=V is the energy density for a single photon in a volume V, the above
expression coincides with Equation (21.13.3) after converting between energy and
frequency densities.

21.14 SELECTION RULES

In transitions between states of isolated hydrogen atoms, the dipole matrix element of
the previous section factors into the product of a radial and an angular matrix element:

ψ 0h jê � r! ψj i =
ð∞
0
r3R*

nl rð ÞRn0l0 rð Þdr
ð
Y*
l0m0 θ,φð Þê � r̂Ylm θ,φð ÞdΩ ð21.14.1Þ

Since the components x, y, and z all act as P1(cos θ) = cos θ with respect to the cor-
responding axis, the dipole term is a combination of first-order l = 1 spherical harmo-
nics. Indeed, noting that Ylm(θ, φ)/ exp(imφ),

ê � r̂ = êx sinθcosφ+ êy sinθ sinφ+ êz cosθ

=
sinθ
2

êx− iêy
� �

eiφ + êx + iêy
� �

e− iφ

 �

+ êz cosθ
ð21.14.2Þ

And therefore, ê � r̂ is a combination of Y11 Y10 and Y1 − 1 terms and can through the
addition of angular momentum only induce transitions from l to l0 = l, l ± 1 states. The
transverse polarization of the photon further implies that, if êz is associated with the
photon propagation direction, ê is confined to the x − y plane. Hence, only transitions

from a state with azimuthal quantum number m to state with m0 =m + 1 or m0 =m − 1

are allowed leading to the outgoing forward-traveling radiation that is, respectively,

right-circularly polarized (i.e., described by êx− iêy
� �

=
ffiffiffi
2

p
in Equation (21.13.6)) and

left-circularly polarized. The projection (helicity) of the unit photon angular momen-
tum along the z-axis of the emitted photon then equals −1 for Δm = + 1 (from
Re êx− iey
� �

cosωt− isinωtð Þ� �
= êx cosωt− êy sinωt) and + 1 for Δm = −1, so that

the total angular momentum of the atom–photon system is preserved. Further, since

the dipole operator is odd, the final and initial atomic states must possess opposite

parity. The (−1)l parity of Ylm(θ, φ) thus excludes Δl = 0 transitions, while the spin
of the final state is unchanged from that of the initial states as a result of the spin inde-
pendence of the electric dipole interaction. Accordingly, the atomic dipole transition
selection rule takes the form

Δl= ± 1,Δs= 0 ð21.14.3Þ

For containing more than one electron, the dipole moment is composed of a sum of
the dipole moments of the individual electrons, while the atomic parity is not deter-
mined only by the total angular momentum, l, as a consequence of which Δl = 0
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transitions are alsopermitted.The l = 0 to l 0 = 0 transition, however, is always forbidden
since the photon possesses unit angular momentum. Weaker spectral lines are associ-
ated with, e.g., electric quadrupole and magnetic dipole transitions associated with the

k
!� r! term in the expansion of the exponential in Equation (21.13.8) that, respectively,
induce parity, preserving Δl = ± 2, ± 1, 0 and Δl = ± 1, 0 transitions with no parity

change. As well, a small S
!�B! atomic interaction term leads to Δs 6¼ 0 transitions.

21.15 SCATTERING THEORY

In center of mass coordinates, the general wavefunction solution of Schrödinger equa-
tion describing a particle in an incoming z-propagating uniform monoenergic particle
beam scattering from a central potential of the form U(r) is given by

ψ r,θð Þ = eikz + f θ,φð Þ
r

eikr = eikr cosθ +
f θ,φð Þ

r
eikr ð21.15.1Þ

Since m = 0 for the incoming, azimuthally symmetric beam, a φ dependence is only
present for spin-dependent potentials that couple states with differing m. Excluding
these, separating ψ (r, θ) into a product of radial and angular functions results in

ψ r,θð Þ =
X∞
l= 0

clRl krð ÞPl cosθð Þ ð21.15.2Þ

with

1
r

d2

dr2
rRl krð Þð Þ + 2m

ℏ2 E−U rð Þð Þ− l l+ 1ð Þ
r2

� �
Rl krð Þ= 0 ð21.15.3Þ

From the central result, Equation (13.5.20), for a plane wave,

eikrcosθ =
X∞
l= 0

il 2l+ 1ð Þjl krð ÞPl cosθð Þ! 1
kr

X∞
l= 0

il 2l+ 1ð Þsin kr−
πl

2

� �
Pl cosθð Þ

ð21.15.4Þ

If U(r)! 0 and therefore 2m(E −U(r))=ℏ2! k2 faster than 1=r as r!∞, multiply-
ing Equation (21.15.3) by r similarly yields in the r!∞ limit, where cl and δl are
determined from the exact solution,

Rl krð Þ = cl
r

ffiffiffi
2
π

r
sin kr + δl−

πl

2

� �
ð21.15.5Þ
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For a general solution to describe an incoming plane wave together with an elastically
scattered radially outgoing wave, according to Equation (21.15.1), the radially incom-
ing part (� exp(−ikr)) of each term in the sum of Equations (21.15.2) and (21.15.5)
must coincide with that of Equation (21.15.4), which implies

cl =
1
k

ffiffiffi
π

2

r
2l+ 1ð Þileiδl ð21.15.6Þ

From

2il sin kr−πl=2ð Þ = − i�il exp ikrð Þ − ið Þl− exp − ikrð Þil
� 

= i −1ð Þl exp − ikrð Þ− exp ikrð Þ
�  ð21.15.7Þ

the asymptotic field can be rewritten as

ψ r,θð Þ= i

2kr

X∞
l= 0

2l+ 1ð Þ −1ð Þle− ikr −e2iδl eikr
h i

Pl cosθð Þ ð21.15.8Þ

which is the sum of an incoming plane wave solution (Equation (21.15.4)) and a scat-
tered field with

f θð Þ = 1
2ik

X∞
l= 0

2l+ 1ð Þ e2iδl −1
� �

Pl cosθð Þ ð21.15.9Þ

The scattering cross section, dσ, into a solid angle dΩ is defined by dσ = j f(θ)j2dΩ
with dΩ = sin θdθdφ. The orthogonality of the Pl(cos θ), Equation (13.2.26), then
yields the total cross section

σ = 2π
ðπ
0
f θð Þj j2 sinθdθ = 4π

k2
X∞
l= 0

2l+ 1ð Þsin2δl ð21.15.10Þ

IfU(r) = 0 for r > a, only the s-wave (l = 0) amplitude of a slow incoming particle with
λ = 2π=k� a and ℏ2k2=2m�U(r) is significantly altered by scattering since, writing
Equation (21.15.3) in terms of the dimensionless variable r0 = kr,U is nonzero only in
the region r0 � 1 for which −l(l + 1)=r02� 1. That is, for l 6¼ 0, the angular momen-
tum term in the Hamiltonian excludes the partial wavefunction from the vicinity of the
scattering center.

The spatial wavefunction for two identical scattering particles is either symmetric
or antisymmetric upon interchange. In a center of mass system, substituting θ! π − θ
interchanges the particles so that

ψ
symmetric

antisymmetric

n o rð Þ = eikz ± e− ikz + eikr

r
f θð Þ± f π−θð Þð Þ ð21.15.11Þ
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For two spin ½ particles, the top sign applies to the stotal = 0, symmetric spatial wave-
function state, and the lower sign to the stotal = 1, antisymmetric wavefunction state.
The differential cross section is then

dσ
symmetric

antisymmetric

n o = f θð Þ± f π−θð Þj j2dΩ ð21.15.12Þ

Since identical but unpolarized fermions possess three times asmany stotal = 1 as stotal = 0
spin states,

dσunpolarized =
1
4
dσsymmetric +

3
4
dσantisymmetric

= f θð Þj j2 + f π−θð Þj j2− 1
2

f θð Þf * π−θð Þ + f * θð Þf π−θð Þ
 �� �
dΩ

ð21.15.13Þ
If the two particles are distinguishable, the interference term is absent, yielding instead

dσdistinguishable = f θð Þj j2 + f π−θð Þj j2
� 

dΩ ð21.15.14Þ

A scattering event accompanied by a change in the internal state of the system, such
as a change in the occupied energy levels of the particles, their chemical composition or
number, is termed inelastic. Each accessible change forms a separate reaction channel.
For a spherically symmetric central force, inelastic collisions do not alter the particle
angular momentum but do modify the channel amplitudes in Equation (21.15.8):

ψ r,θð Þ = i

2kr

X∞
l= 0

2l+ 1ð Þ −1ð Þle− ikr −Sleikr
h i

Pl cosθð Þ ð21.15.15Þ

The difference ψ − exp(ikz) of the scattered and the incoming waves then adopts
the form

f θð Þ = 1
2ik

X∞
l= 0

2l + 1ð Þ Sl−1ð ÞPl cosθð Þ ð21.15.16Þ

yielding for the cross section associated with the outgoing field, termed the elastic
cross section,

σelastic =
π

k2
X∞
l= 0

2l+ 1ð Þ Sl−1j j2 ð21.15.17Þ

while the inelastic cross section refers to the sum of the amount of power lost in each
channel,

σinelastic =
π

k2
X∞
l= 0

2l+ 1ð Þ 1− Slj j2
� 

ð21.15.18Þ
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The total cross section is the sum of these two cross sections,

σtot = σelastic + σinelastic =
π

k2
X∞
l= 0

2l+ 1ð Þ 2−Sl−S
*
l

� � ð21.15.19Þ

Setting θ = 0 results in the optical theorem

Im f 0ð Þð Þ= Im 1
2ik

X∞
l= 0

2l+ 1ð Þ Sl−1ð Þ
" #

=Re
1
2k

X∞
l= 0

2l+ 1ð Þ 1−Slð Þ
" #

=
k

4π
σtot

ð21.15.20Þ
The Born approximation for scattering from a localized time-independent potential

distribution neglects momentum transfer to the incoming particle. Assuming a station-
ary scatterer (otherwise, particle velocities must be replaced by relative velocities and
masses by effective masses), the golden rule matrix element between initial and final
states with momenta pi and pf is given by, for wavefunctions normalized to one par-
ticle per unit volume,

ψp
!
f

D ���H0 xð Þ ψp
!
i

��� E
=
1
V

ð
V
U xð Þei

ℏ p
!
i −p

!
fð Þd3x≡U p

!
i−p

!
f

� � ð21.15.21Þ

The density of continuum plane wave states can be obtained by imposing periodic
boundary conditions along the sides of a cube of volume V for which the allowed values
of kα are spaced by 2π=L along each coordinate direction and the momentum space
volume occupied by a state therefore equals Vp = ℏ3Vk = ℏ3(2π=L)3 = h3=V. Relativis-
tically, E2 − c2p2 =m2c4 implies EdE = c2pdp where E = γmc2 and p

! = γmv
! so that

p/E = v=c2 where γ = (1 − v2=c2)1/2. Hence, if Ρ(E) and P(p) denote the density of
states per unit energy interval and volume and the density of states per unit momentum
space volume,

Ρ Eð ÞdEdΩ= Ρ pð Þ|ffl{zffl}
1=Vp

c2p

E
dE dΩ=

1
h3
p2

v
dEdΩ ð21.15.22Þ

with a scattering cross section per unit solid angle from Fermi’s golden rule (Equa-
tion (20.16.31)) (after division by the incoming particle velocity to change the normal-
ization from one particle per unit volume to one incident particle per square meter per
second):

dσ

dΩ
=

m2γ2

4π2ℏ4 U p
!
i−p

!
f

� ��� ��2 ð21.15.23Þ

This formula is generally accurate when the phase change over the spatial extent,D, of
the perturbing potential on the incoming wavefunction,

kpotential−k
� �

D=
D

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

p2

2m
+U

� �s
−p

 !
� 2π ð21.15.24Þ

and therefore the distortion of the incoming plane wave wavefront is small.
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Example

To find U(p) in the Born approximation for the nonrelativistic scattering of a
chargeQ1 by a second chargeQ2, note that the potential energyU(r) =Q1Q2=4πε0r
solves the Poisson equation r2U r

!� �= −Q1Q2δ r
!� �
=ε0. Fourier transforming both

sides of this equation and integrating each term within the integral twice by parts

yield the desired matrix element, U p
!
−p

!0� 
, according to

ð
×3
e

i
ℏ p

!
i−p

!
fð Þ�r! ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

 !
U rð ÞdV = −

p!i−p
!
f

� �2
ℏ2 U p

!
i−p

!
f

� �
= −

Q1Q2

ε0

ð21.15.25Þ

Employing p
!
i−p

!
f

�� ��2 = p2 2−2cosθð Þ = 4p2 sin2 θ=2ð Þ then reproduces the classical
Rutherford scattering result:

dσ

dΩ
=
Q2

1Q
2
2

4π2
m

ε0p2

� �2 1

16sin4 θ2
ð21.15.26Þ

378 ATOMIC PHYSICS



22
NUCLEAR AND PARTICLE PHYSICS

Nuclear and particle physics generally involves time and energy scales far removed
from atomic binding energies (volts) and reaction times (>femtoseconds = 10−15s).
Despite this, classical and quantum methods often provide an adequate framework
for understanding the underlying features of the relevant processes.

22.1 NUCLEAR PROPERTIES

A nucleus, denoted by A
ZX , is characterized by the number of its protons that is

termed the atomic number, Z, and the mass number, A =N + Z, corresponding to
the total number of nucleons (neutrons and protons). Isotopes refer to atoms with the
same number of protons but different number of neutrons. For example, terrestrial
carbon contains 98.6% 12

6 C , 1.1% 13
6 C , and small amounts of 116 C and 14

6 C . Similarly,
hydrogen exists in three isotopes, atomic hydrogen 1

1H , deuterium 2
1H , and tritium

3
1H . The atomic weight of an atom equals the mass of its isotopes weighted according
to their average natural abundance where the isotopic mass is approximated by the
sum of the masses of its component particles with

mproton = 1:00728 amu = 938:3 MeV=c2 = 1:672 × 10−27 kg
mneutron = 1:00867 amu = 939:6 MeV=c2 = 1:675 × 10−27 kg
melectron = 0:00055 amu = 0:51 MeV=c2 = 9:11 × 10−31 kg

ð22.1.1Þ
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The fraction of neutrons to protons in nuclei generally increases with atomic num-
ber. The nuclear binding energy

B= Zmproton +Nmneutron−mnucleus Z,Nð Þ� �
c2 ð22.1.2Þ

per particle grows rapidly with Z until Z≈ 25 and then remains nearly constant until
finally decreasing roughly linearly for Z > 75. In fact, particularly stable nuclei exist
when either or both of Z and N equal magic numbers 2, 8, 20, 28, 50, 82, 126 as the
binding energy of a neutron (the energy required to remove a single neutron from
the nucleus) among the isotopes of a single element increases when this condition
is satisfied. The binding energy is also larger for even numbers of neutrons suggesting
the presence of a pairing interaction. Scattering experiments with spin-polarized
neutrons indeed indicate that the force between nucleons is attractive within a radius
of about ≈ 2 fm (1 fm = 10− 15 m) and repulsive inside a core region extending for a
few tenths of a Fermi. The approximate nuclear radius

rnuclear≈ 1:2 × 10−15 m
� �

A
1
3 ð22.1.3Þ

is determined through collisions with accelerated ions that possess sufficient energy
to surmount the nuclear Coulomb barrier. The

ffiffiffi
A3

p
dependence suggests that the

nuclear density does not vary with A. The liquid drop model of nuclear structure
accordingly first includes the implied linear dependence of the binding energy on
A. A second negative contribution proportional to the surface area results from the
reduced number of nucleons with which nucleons at the surface can bind.
A Coulomb contribution proportional to the inverse of the nuclear radius multiplied
by the square of the nuclear charge models the potential energy of a uniform spherical
charge distribution. Finally, a “symmetry energy” accommodates the exclusion prin-
ciple, as a result of which neutrons that are in excess of the number of protons must
occupy higher nuclear states, decreasing the binding energy. This contribution can be
estimated by modeling the nucleus as a Fermi liquid contained within a volume (1.3A)
fm3 yielding pN,Fermi = ℏ/1.3 fm(9πN/4A) for the neutron Fermi momentum accord-
ing to Equation (23.15.4) with a similar expression for protons. The average energy of
the nucleons then approximates the observed symmetry energy. Combining all four
contributions,

Ebinding = avolumeA−asurfaceA
2
3−aColumbZ

2A−1
3−asymmetry

Z−Nð Þ2
A2

ð22.1.4Þ

With suitable coefficients, Equation (22.1.4) accurately predicts nuclear binding ener-
gies. Alternatively, the nuclear shell model employs the quantum mechanical energy
levels of an empirical nuclear potential. When the number of neutrons suffices to fill a
level, the binding energy increases, increasing the nuclear stability in the same manner
that closed orbitals enhance the stability of noble gases. However, spin and other inter-
actions are required to reproduce the observed magic numbers.
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The nuclear angular momentum corresponding to the vector sum of the angular
momenta of the nucleons is an integer or half-integer. The proton and neutron mag-

netic moments are, respectively, 2.79μnuclear and − 1.91μnuclear where the magnitude
of the nuclear magneton

μnuclear =
eℏ

2mproton
= 5:05 × 10−27J=T ð22.1.5Þ

equals approximately 1/2000 of the Bohr magneton as a consequence of the greater

proton mass. Hence, an applied magnetic field splits an atomic level into hyperfine
levels with different nuclear spin orientations. In nuclear magnetic resonance spec-
troscopy, a low-frequency (typically radio) wave induces transitions between these
levels, leading to increased absorption. In the presence of a magnetic field gradient,
the resonance frequency becomes position dependent, enabling magnetic resonance
imaging.

22.2 RADIOACTIVE DECAY

As nucleons are less strongly bound in large atoms and isotopes, these often sponta-
neously radiate or decompose into more stable fragments. Such processes typically
release, in order of penetrating ability, (i) 4

2He nuclei (alpha rays); (ii) electrons or
positively charged electron antiparticles, e+, termed positrons (beta rays); and
(iii) high-energy photons (gamma rays). Defining the Q-value of the reaction A

ZX !
A−4
Z−2Y + 4

2He as

Q= mX −mY −mαð Þc2 ð22.2.1Þ

alpha particles are emitted with a discrete spectrum of Q-values, indicating that the
reacting nucleons belong to different energy levels. The emission process is therefore
modeled by the formation and subsequent tunneling of an alpha particle inside the
nucleus through a potential barrier. High-energy alpha particles tunnel more rapidly
and therefore possess shorter decay time constants. In beta decay, an electron or pos-
itron is instead emitted with a continuous spectrum of energies from zero to a max-
imum kinetic energy. This requires the existence of two new particles, the (electron)
neutrino, υe, and antineutrino, �υe, with zero charge, negligible mass, a spin of ½, and a
minute cross section with matter. These particles receive momentum and energy from
the scattering process according to either

A
ZX ! A

Z−1Y + e+ + υe

A
ZX ! A

Z + 1Y + e− + �υe
ð22.2.2Þ
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Finally, gamma rays are generated when a nucleus decays to an excited state and sub-
sequently emits a photon with a characteristic energy spectrum in a further transition
to a stable state.

In a homogeneous radioactive sample, the decay probability is identical and time
independent for every atom; hence, the decay rate (the number of decays per unit time)
is proportional to the number of decaying atoms. As a result, the number of radioactive
nuclei decreases with time according to

dN

dt
= −λN ð22.2.3Þ

where λ is termed the decay constant so that N =N(t = 0)exp(−λt). The decay rate or
activity

R=
dN

dt

����
����= λN t = 0ð Þe−λt ð22.2.4Þ

is expressed in becquerel, which is one decay per second, or curies, 3.7 × 1010 decays
per second. The half-life is the time over which half of a given sample decays so that
N t = 0ð Þe−λt1=2 =N t = 0ð Þ=2 or

t1=2 =
ln2
λ

=
0:693
λ

ð22.2.5Þ

After M half-lives, a fraction 1/2M of the original sample remains.

22.3 NUCLEAR REACTIONS

A high-energy particle incident on a nucleus X can change its composition, generating
a new nucleus Y in a nuclear reaction denoted by Aincoming + X! Boutgoing + Y or
equivalently X(Aincoming, Boutgoing)Y. The reaction energy generated is related to the
individual particle rest energies by

Q = MA +MX −MB−MYð Þc2 ð22.3.1Þ

If the incoming and outgoing particles as well as the nuclei X and Y are identical, the
scattering is termed elastic if Q = 0 and inelastic otherwise. Processes with Q > 0 and
Q < 0 are termed exothermic and endothermic, respectively, while the kinetic energy
of Aincoming required for the reaction to occur is called the threshold energy. Nuclear
reactions conserve relativistic energy and momentum and preserve the number of
nucleons.
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22.4 FISSION AND FUSION

Since the particle binding energy increases as a function of Z for Z < 25 and decreases
with Z for Z > 75, energy can be released either by the fusion of two small nuclei into a
larger nucleus or the fission (splitting) of a heavy nucleus. Fission can generate a chain
reaction, as when 235U absorbs a slow neutron thus becoming larger and more unsta-
ble. As the liquid drop model predicts, the nucleus then splits into two roughly equal
size nuclei, releasing excess neutrons. These neutrons generate further reactions in the
presence of a sufficient, critical mass of uranium.While this normally yields a nuclear
explosion, if the neutron energy is properly controlled, the process can be instead
employed for power generation. At high temperatures and densities, small nuclei
can overcome large Coulomb barriers to produce fusion. In a star, e.g., the proton–
proton cycle produces a helium nucleus, electron, and neutrino from four protons:

1
1H + 1

1H ! 2
1H + e+ + ν

1
1H + 2

1H ! 3
2H

e + γ

3
2H

e + 3
2H

e ! 4
2H

e + 1
1H + 1

1H

ð22.4.1Þ

22.5 FUNDAMENTAL PROPERTIES OF ELEMENTARY PARTICLES

High-energy collisions in particle accelerators identified numerous elementary parti-
cles that complement the common stable particles, namely, the electron, neutrino, pro-
ton, neutron, and photon. While the unstable particles possess short lifetimes that
severely limit practical application, analysis of their interactions led to models of
physical forces in which strong forces mediated by gluons bind subatomic particles
termed quarks. The strong force increases with distance precluding the observation
of isolated quarks. Electromagnetic forces result from interactions with “virtual”
photons, while weak forces, which lead to processes such as beta decay, are trans-
ferred by the W and Z bosons. It is predicted by the electroweak theory that the elec-
tromagnetic and weak forces are identical at high energies. Finally, gravitational
forces are mediated by gravitons. That is, from the uncertainty principle, energy con-
servation can be violated over a time proportional to the inverse of the magnitude of
the energy violation. In a simple model, while, e.g., individual gluons are confined to
a single nucleon, a proton can release a massive “virtual” neutral pion, π0, composed
of a quark and an antiquark that can transfer energy and momentum to a second
nucleon. Such a pion of mass Mπ exists for only time given by Δt≈ ℏ/(2Mπc

2) and
cannot propagate further than cΔt. Hence, this force component is only substantial
for distances of the order of the nuclear radius. In contrast, the graviton and photon
are massless, leading to long range 1/r2 forces.

Particles can be classified as, first, the six leptons, namely, the electron, muon, tau
lepton, and their corresponding neutrinos that interact primarily through electroweak
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forces. The lepton masses are 0.511, 105, and 1,784 MeV, respectively, while the
neutrinos are assumed massless. Next, six spin ½ and baryon number 1/3 quarks
can bind through strong interactions to form hadrons such as protons and
neutrons. These quarks are the up, down, charmed, strange, and top and bottom
with masses of 360, 350, 1500, 540 MeV, and 173 and 5 GeV, respectively
(GeV = billion electron volts). Every quark possesses one of three colors, red,
green, and blue, while hadrons cannot contain three quarks of the same type
as a result of Fermi statistics. The up, charmed, and top quarks possess a frac-
tional charge of 2e/3, while the charge of the remaining quarks is − e/3. Since in

relativity theory, E2 − c2p2 = m2c4, implying E = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 +m2c4

p
, every particle

possesses a corresponding antiparticle with the negative energy and opposite values
of internal quantum properties such as charge. While these negative energy states are
normally filled, a high-energy excitation can excite a particle from a negative to a pos-
itive energy state, leaving a “vacancy” associated with an antiparticle. A collision
between a particle and its antiparticle refills this vacancy, releasing approximately
twice the particle rest mass. Hadrons are subdivided into mesons that contain
one quark and one antiquark and therefore possess zero or unit spin and spin ½ or
3/2 baryons with 3 quarks that constitute fermions. Thus, e.g., a π+ meson is formed
from an up and an antidown quark, while a neutron is composed of one up and
two down quarks.

Some properties and conservation rules of particles and particle interactions are:

1. Conservation of electron-lepton, muon-lepton, and tau-lepton numbers where,
e.g., the electron leptons, namely, electrons and electron neutrinos, and electron
antileptons are assigned electron-lepton numbers of 1 and −1.

2. Conservation of baryon number: All baryons possess baryon number 1 and all
antibaryons −1. The proton is absolutely stable because it comprises the smal-
lest mass baryon.

3. Conservation of strangeness, charm, topness, and bottomness in strong but not
weak interactions: For example, charm quantum numbers are 1 and −1 for a
charmed quark and antiquark, respectively.

4. Absence of colored baryons: The quarks in a baryon are either red, green, and
blue or antired, antigreen, and antiblue, while a meson contains a quark and an
antiquark of the same color.

Being comprised of two quarks, mesons form an octagonal pattern termed the
eightfold way when plotted as functions of charge and strangeness. As up, down,
and strange quarks possess charges of 2e/3, − e/3, and − e/3, two positively charged
mesons, the π+ and K+ mesons with strangeness 0 and 1, can be formed as u�d and u�s.

The strangeness 1 and –1 uncharged K0 and �K0 mesons are then formed as d�s and �ds.
An additional three (η, η ', and π0) mesons with strangeness 0 are composed of the
three neutral quark pairs u�u, d�d, and s�s. Displaying the charge and strangeness of each
particle as (x, y) pairs yields, after including the π− and K− antiparticles,
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charge = −1 charge = 0 charge = 1

strangeness = −1 K0 K +

strangeness = 0 π− η,η0,π0 π +

strangeness = 1 K − �K0

ð22.5.1Þ

For spin 1/2 baryons, the corresponding diagram is

charge = −1 charge = 0 charge = 1

strangeness = 0 n p

strangeness = −1 Σ − Λ0,Σ0 Σ +

strangeness = −2 Ξ− Ξ0

ð22.5.2Þ
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23
THERMODYNAMICS AND
STATISTICAL MECHANICS

While the equations of motion for even a few interacting particles can only be solved
numerically, systems containing a large number of particles can be characterized sta-
tistically in terms of average, macroscopic properties such as temperature, energy, and
pressure. Thermodynamics relates these quantities based on a few underlying physical
assumptions, while statistical mechanics instead proceeds from the principle that a
system with many degrees of freedom transitions randomly between all accessible
configurations consistent with its macroscopic properties.

23.1 ENTROPY

In contrast to the description of a deterministic mechanical or quantum mechanical
configuration, the behavior of a statistical mechanical system is characterized by
the average properties of a large number of independent realizations or replicas,
termed a statistical ensemble. These can be multiple identical systems at a given time
or a single system sampled repeatedly over time intervals longer than the correlation
time required to eliminate its dependence on the previously sampled state. The proper-
ties of an ensemble depend on whether energy and/or particles are exchanged with its
environment. The energy of an isolated system is determined within an accuracy ΔE
that is, in theory, inversely proportional to the measurement time implying that all
system configurations within this energy interval, termed amicrocanonical ensemble,
are equally probable.
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If a system instead exchanges energy/particles with its environment, only the
average energy/particle density is quantifiable. Assuming no additional prior system
information or measured experimental parameters beyond these constraints implies
that in an optimal description, the system can occupy any possible state subject to
these constraints with state occupation probabilities that insure maximum random-
ness. In a canonical ensemble, energy is exchanged with the external environment
so that only the mean energy, quantified through the temperature, can be measured.
A system that exchanges both heat and particles (as exchanging particles necessarily
alters the energy) is described by a grand canonical ensemble in which the mean num-
ber of particles is quantified through the chemical potential.

The particles of a system further obey classical or quantum mechanical statistics.
For a systemof distinguishable or “identifiable” parts such as isolated atoms in a spatial
lattice or a gas of dissimilar particles, a realization in which, e.g., an atomA is in state 1
and B in state 2 differs from a realization in which A is in 2 and B in 1. These two states
are instead identical for indistinguishable components such as atoms in a monatomic
gas. For Fermi–Dirac statistics, each state can contain at most one particle, while for
Bose–Einstein statistics, any number of particles can be present in a state.

The degree of randomness of a system is quantified by its entropy or equivalently
information content. To illustrate, consider a system of distinguishable noninteracting
particles each occupying one of two equally likely states with energies 0 and E.
Adding a particle to the system increases its randomness by unity, as one additional
element of information becomes uncertain, while doubling the number of states (since
a system state is specified by that of the additional particle together with the state of the
remainder of the system). Therefore, the entropy is proportional to the number of such
particles or equivalently to the logarithm of the number, 2N, of equally probable states.
In general, a system composed of two distinguishable subsystems, with N and N0

states, possesses NN0 states, while the entropy, S, is given by the sum of the entropies
of the two subsystems; i.e.,

S NN 0ð Þ = S Nð Þ+ S N 0ð Þ ð23.1.1Þ
which coincides with the properties of the logarithm function. Mathematically, if
N0 = 1 + δ, from a Taylor expansion, noting that the entropy of a single state system
equals zero,

S N 1 + δð Þð Þ= .S Nð Þ +Nδ dS Nð Þ
dN

����
N

S Nð Þ+ S 1 + δð Þ =

.S Nð Þ + S 1ð Þ|ffl{zffl}
0

+ δ
dS Nð Þ
dN

����
N = 1

=

ð23.1.2Þ

Accordingly,

dS Nð Þ
dN

=
1
N

dS

dN

����
N = 1

≡
Ξ
N

ð23.1.3Þ
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verifying that the entropy is proportional to the logarithm of the total number of
accessible states. In information theory, the constant Ξ = 1/loge2 yielding the informa-
tion I = log2N, while in statistical mechanics, Ξ = k. Hence, S = k lnNwhere the Boltz-
mann constant k = 1.38 × 10− 23 J/�K.

Consider next a three-state system for which the probability of states of
energy E and 2E is ¼, while that of a state with energy 0 is ½. The 50% of particles
in state 0 contribute k ln 2 = −k ln(1/2) to the entropy as these effectively populate a
subsystem with two equally likely outcomes, while the contribution of each of
the other remaining particles equals − k ln(1/4). Weighting each of these by its
probability of occurrence pn yields, in the general case of N states with occupation
probabilities pm,

S = −k
XN
m= 1

pm ln pm ð23.1.4Þ

23.2 ENSEMBLES

As noted in the previous section, a microcanonical ensemble models a fully isolated
system that cannot exchange heat or particles with its environment and therefore pos-
sesses an energy that canbedetermined according toquantummechanicswithin a range
ΔE≈ ℏ/ΔtwhereΔtdenotes themeasurement time. The randomness of the ensemble is
maximized subject to the lack of any prior knowledge of the microscopic condition of
the systemby assigning an equal occupation probability to each statewith a total energy
within the interval [E, E +ΔE] and zero probability to all other states. Consider an
ensemble of distinguishable atoms with energy levels {E1, E2,…, Em} that are occu-
pied on average by {N1,N2,…,Nm} particles (to insure that all Ni� 1, the Ni can also
be interpreted either as the number of states of the entire ensemble with an average
energywithin each range [Ei, Ei + 1] or as the totalnumber of atoms in state i in the entire
ensemble). The number of unique system configurations subject to these constraints
equals the product of the NCN1

distinct ways, with N as the total number of particles,
to distribute N1 electrons into the i = 1 state(s), with the N−N1

CN2 N2
ways to distribute

N2 of the remaining electrons into the i = 2 state(s), etc., yielding the multinomial
distribution

P N1,N2,…,Nmð Þ = N!

N1! N−N1ð Þ!
N−N1ð Þ!

N2! N−N1−N2ð Þ!…=
N!

N1!N2!…Nm!
ð23.2.1Þ

where

X
i

Ni =N

X
i

NiEi =E
ð23.2.2Þ
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The occupation probability of the individual energy states in the microcanonical
ensemble, for which the total energy is fixed, can be obtained from the condition
that a small energy-conserving perturbation of the most likely distribution does not
alter P to the lowest order. Considering, e.g., a subset of three states, L, j,H, with
energies Ej −ΔEL, Ej, Ej +ΔEH, of them states of this system, if the change in energy,
NH! jΔEH = aΔELΔEH, resulting from displacing aΔEL electrons from H to j is com-
pensated by displacing of aΔEH electrons (approximated by an integer) from L to j,
this condition takes the form

P=
N!

N1!N2!… NL−aΔEHð Þ!… Nj + a EH +ELð Þ� �
!… NH −aΔELð Þ!…Nm!

=
N!

N1!N2!…Nm!

ð23.2.3Þ

If the displacement is small compared to the number of particles in each of the three
states,

Nj + a
� �

!

Nj!
= Nj + a
� �

Nj + a−1
� �

… Nj + 1
� �

≈ Nj

� �a ð23.2.4Þ

Hence, multiplying Equation (23.2.3) by the product of both denominators,

NLð ÞaΔEH NHð ÞaΔEL = Nj

� �a ΔEH +ΔELð Þ ð23.2.5Þ

and therefore,

NL

Nj

� �aΔEH NH

Nj

� �aΔEL

= 1 ð23.2.6Þ

Taking the logarithm

aΔEH ln
NL

Nj

� �
= −aΔEL ln

NH

Nj

� �
ð23.2.7Þ

or

1
ΔEL

ln
NL

Nj

� �
=

1
ΔEH

ln
Nj

NH

� �
≡β ð23.2.8Þ

implying in both cases the Boltzmann condition

Nj

Nk
= e−β Ej−Ekð Þ ð23.2.9Þ

A heat reservoir consists of an extended body with far more quantum mechanical
modes than the system. Consequently, energy transferred from the system does not
measurably alter the modal occupation probabilities in the reservoir and hence its tem-
perature. A group of systems in thermal contact with either a reservoir or equivalently
with a large number of identical systems constitutes a canonical ensemble, in which
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the system energy fluctuates with time. In a grand canonical ensemble, systems
exchange both heat and particles with an adjoining reservoir or a multitude of
identical systems through, e.g., porous membranes. If in a grand canonical ensemble
of K systems Ki,j systems possess particle numbers from [Ni,Ni +ΔN] within a fixed
energy interval [Ej, Ej +ΔE] (or simply Ni particles in state Ej),

X
i, j

Ki, j =K

X
i, j

Ki, jEj =E

X
i, j

Ki, jNi =N

ð23.2.10Þ

the state occupation probability is obtained by maximizing the entropy from
Equation (23.2.1)

S

k
= ln P Ki, j

� �
=K ln K−

X
i, j

Ki, j lnKi, j ð23.2.11Þ

subject to the constraints of Equation (23.2.10). Introducing the constraint equations
through Lagrange multipliers (cf. Section 8.5) implies

∂

∂Kk, l

S

k
−α

X
n,m

Kn,mNn−N

 !
−β

X
n,m

Kn,mEm−E

 !
−γ

X
i,m

Kn,m−K

 ! !
= 0

ð23.2.12Þ
with the solution

− lnMk, l−1−αNk −βEl−γ = 0 ð23.2.13Þ
or

Ki, j = ce
−βEj−αNi ð23.2.14Þ

The probability of occupation of a state is then

p Ej,Ni

� �
=
Ki, j

K
=

e−βEj −αNiX
i, j

e−βEj−αNi
ð23.2.15Þ

The values of β and α are found from

�E =
X
k, l

Ekp Ek,Nlð Þ=
X
k

Ekp Ekð Þ=

X
k, l

Eke
−βEk −αNl

X
k, l

e−βEk −αNl
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�N =
X
k, l

Nlp Ek,Nlð Þ=
X
l

Nlp Nlð Þ =

X
k, l

Nle
−βEk −αNl

X
k, l

e−βEk −αNl
ð23.2.16Þ

where �E and �N represent the average energy and number of particles. In the canonical
ensemble, N does not vary and α is therefore absent in the formalism, reproducing
Equation (23.2.9). Indeed, in the derivation of Equation (23.2.9), the subsystem con-
sisting of the state or states at energy Ej +ΔEH exchanges energy with the remainder
of the system, which therefore functions as a heat reservoir. As will be demonstrated
presently, β = 1/kT in terms of the temperature T, where kT corresponds to the aver-
age increase in energy if an additional one-dimensional harmonic oscillator compo-
nent is added to the system. Analogously, α = μ/kT in which the chemical potential,
μ, corresponds to the average work (up to an additive constant) required to displace
an additional particle from infinity to a location at rest within the system (note that α
must be dimensionless since N is dimensionless). Both T and μ are time or ensemble
averaged and therefore time-independent quantities.

23.3 STATISTICS

A system of two distinguishable particles occupying a single spatial state with spins +
and − possess four distinct spin states, (+,+), (+,−), (−,+) and (−,−), yielding S = k ln
4 = 2k ln 2 or twice the entropy of a single spin. If the particles are instead indistin-
guishable and obey Bose–Einstein statistics, (+,−) and (−,+) are identical and S = k
ln 3, while for Fermi–Dirac statistics, (+,+) and (−,−) (for which two electrons are
present in the same space × spin state) are additionally excluded. Hence, the proba-
bility of configurations that contain more than 1 particle in a given energy state, e.g.,
the probability of either (+,+) or (−,−), is enhanced for Bose–Einstein particles (here
2/3) and lowered for Fermi–Dirac particles (0/1) relative to that of classical distin-
guishable particles (2/4). The classical result can however be partially corrected by
multiplying by the reciprocal, 1/2!, of the number of permutations of two identical
particles. The resulting estimate (2 !)2/2! = 2 is, respectively, one less and one more
than the Bose–Einstein and Fermi–Dirac enumerations.

To determine the distribution functions for Bose–Einstein and Fermi–Dirac
particles, note first that Equation (23.2.14) can be obtained by maximizing ln P with
P given by Equation (23.2.1), subject to the constraints of Equation (23.2.2), as this
leads to, after introducing Lagrange multipliers α and β,

∂

∂Nl
N ln N−N−

X
i

Ni ln Nið Þ+N−α
X
m

Nm−N

 !
−β

X
m

NmEm−E

 !" #
= 0

ð23.3.1Þ
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The Bose–Einstein state occupation probability as a function of energy follows
similarly by first evaluating the number of ways that N identical particles can be
distributed among different energy levels such that Ni particles occupy the Mi energy
levels with energy Ei (or alternatively with energies between Ei and Ei + 1 = Ei +ΔEi).
For a given Ei, the number of distinct configurations coincides with the number of
ways thatNi similar objects can be separated withMi − 1 partitions. This in turn equals
the number of different arrangements of a set of Ni andMi − 1 identical objects of two
different types. Incorporating all states of different energies,

P N1,M1,N2,M2,…ð Þ =
Y
i

Mi +Ni−1ð Þ!
Ni! Mi−1ð Þ! ð23.3.2Þ

Again, maximizing the logarithm of this function subject to

X
i

Ni =N

X
i

NiEi =E
ð23.3.3Þ

yields for large Ni and Mi

∂

∂Nl

Ni +Mið Þ ln Ni +Mið Þ− Ni +Mið Þ−Ni ln Nið Þ−Mi ln Mið Þ

+Ni +Mi−α
X
i

Ni−N

 !
−β

X
i

NiEi−E

 !
2
664

3
775= 0 ð23.3.4Þ

and therefore, where α and β are found from Equation (23.3.3),

ln
Nl +Ml

Nl

� �
= α+ βEl ð23.3.5Þ

or, in terms of the occupation probability of a state of energy Ei,

nl≡
Nl

Ml
=

1
eβEl + α−1

ð23.3.6Þ

If Ni�Mi for all states i, P can be instead approximated by

P N1,M1,N2,M2,…ð Þ≈ Mi
NiY

i

Ni!
ð23.3.7Þ

resulting in the Maxwell–Boltzmann distribution function

ni≡
Ni

Mi
= ce−βEi ð23.3.8Þ
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aftermaximization subject to fixedE andN. Indeed, sinceNi�Mi impliesβEi + α� 1,
Equation (23.3.6) reduces to Equation (23.3.8) in this limit.

For Fermi–Dirac statistics, N indistinguishable particles occupy the M energy
levels such that each state only contains zero or one electron. The number of possible
realizations for state i is therefore Mi

CNi
, e.g., the number of ways that Ni heads can

appear in Mi coin flips. Thus,

P N1,M1,N2,M2,…ð Þ=M1
CN1M2

CN2… ð23.3.9Þ
and

ln P=
X
i

Mi lnMi−Ni lnNi− Mi−Nið Þ ln Mi−Nið Þ½ � ð23.3.10Þ

Maximizing this function as above leads to

ln
Ml−Nl

Nl

� �
= α+ βEl ð23.3.11Þ

or equivalently

nl =
Nl

Ml
=

1
eβEl + α + 1

ð23.3.12Þ

Again, in the limit that the probability of finding a particle in a given state is small
compared to unity, exp(βEi + α)� 1 for all i, reproducing the Maxwell–Boltzmann
distribution function.

23.4 PARTITION FUNCTIONS

Themacroscopic thermodynamic properties of a system such as the energy or pressure
as well as microscopic properties such as the state occupation probabilities can be
obtained from a single partition function and its derivatives. Since the total energy
associated with the mth energy level equals its eigenenergy εm multiplied by the
number of electrons occupying the state, the grand canonical partition function of
this state (the argument V of Zm enters implicitly through the energy level positions
and is often suppressed) is first defined as

Zm β,α,Vð Þ =
X

all occupation numbers ni

e− βεm + αð Þni ð23.4.1Þ

which equals

Zm =

X1
ni = 0

e− βεm + αð Þni = 1 + e− βεm + αð Þ Fermi-Dirac FDð Þ

X∞
ni = 0

e− βεm + αð Þni =
1

1−e− βεm + αð Þ Bose-Einstein BEð Þ

8>>>>><
>>>>>:

ð23.4.2Þ
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In the classical limit, both expressions approach 1 + exp(−(βεm + α)). The mean
number of particles in state m is then obtained from

�nm =

X1 FDð Þ or
∞ BEð Þ

i= 0

nie
− βεm −αð Þni

X
i= 0

1 FDð Þ or
∞ BEð Þ

e− βεm −αð Þni

= −
1
β

∂ ln Zm
∂εm

����
α,β

ð23.4.3Þ

leading to Equations (23.3.6) and (23.3.12) in the form

nm =

e− βεm + αð Þ

1 + e− βεm + αð Þ Fermi-Dirac

e− βεm + αð Þ

1−e− βεm + αð Þ Bose-Einstein

8>>><
>>>:

ð23.4.4Þ

In analogy toEquation (23.4.1), the systemgrand canonical partition function,Z, can

be defined by (the argument V is again generally suppressed):

Z β,α,Vð Þ =
X

i= n1, n2,…f g
e−βEi−αNi

=
X

all permissible l
for level m

e
−β

� P
all energylevels m

nlεm

	
−αnl

=
X1 FDð Þ or

∞ BEð Þ

all ni = 0

e−β ε1n1 + ε2n2 +…ð Þ−α n1 + n2 +…ð Þ

ð23.4.5Þ

However, since exp(a + b) = exp(a) exp(b), these can be recast as the product

Z =
Y∞
m= 1

Zm ð23.4.6Þ

While, e.g., Equation (23.4.3) still applies with Zm replaced by Z, the average energy
of the entire system and the probability of a state with a set of occupation numbers
collectively indexed by i leading to a total energy Ei is designated p(Ei,Ni):

�E =
X
i

Eip Ei,Nið Þ=

X
i

Eie
−βEi −αNi

X
i

e−βEi−αNi
=
∂ ln Z
∂β

ð23.4.7Þ
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The average number of particles is similarly given by

�N =
X
i

Nip Ei,Nið Þ=

X
i

Nie
−βEi −αNi

X
i

e−βEi−αNi
=
∂ ln Z
∂α

ð23.4.8Þ

If a system only exchanges heat with its environment, all members of the ensemble
possess the same total number of particles Ni =

P
l nl. Since then

p Eið Þ = e−βEiX
i

e−βEi
ð23.4.9Þ

the average energy becomes

�E =
X
i

Eip Eið Þ =

X
i

Eie
−βEi

X
i

e−βEi
=

∂

∂β
ln
X
i

e−βEi

 !
≡
∂ ln z
∂β

ð23.4.10Þ

where (one or more of the arguments of z are often omitted)

z β,V ,Nð Þ =
X
i

exp −βEið Þ ð23.4.11Þ

is termed the canonical partition function. If each member of the ensemble is further
isolated from all adjacent members, all states possess the same energy, Ei, or their
energies fall into the same infinitesimal range [Ei, Ei +ΔEi], and thus, all terms in
Z or z are equal. Themicrocanonical partition function Ω(E, V,N), where one or more

of the arguments are again often suppressed, thus corresponds to the number of states

with energies between Ej and Ej + 1 = Ej +ΔE. If the total number of states with ener-
gies less than E is denoted as Νtotal(E, V,N),

Ω E,V ,Nð Þ= ∂Νtotal E,V ,Nð Þ
∂E

ΔE ð23.4.12Þ

For the grand canonical partition function, the entropy is obtained from

S = −k
X
i

p Ei,Nið Þ ln p Ei,Nið Þ= −k
X
i

p Ei,Nið Þ ln e
−βEi −αNi

Z
= kβ�E + kα�N + k ln Z

ð23.4.13Þ

An identical calculation with {exp(−βEi), z} replacing {exp(−βEi − αNi), Z} yields
S= kβ�E + k ln z. Hence, ln z β,Nð Þ= ln Z β,αð Þ + α�N, which from Equation (23.4.8)
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constitutes a Legendre transform of ln Z with respect to α as ∂ ln z/∂N = 0. Similarly,
S = k lnΩ implies lnΩ E,Nð Þ= ln Z β,αð Þ + α�N + β�E. SinceΩ(E,N) corresponds to the
number of states with energy between E and E +ΔE, if E0 denotes the ground state
energy,

z β,Nð Þ =
X

all states i

e−βEi =
X
m

e−β E0 +mΔEð ÞΩ E0 +mΔE,Nð Þ≡
X
Ei

e−βEiΩ Ei,Nð Þ

ð23.4.14Þ
That is, the canonical partition function counts the number of states at each Ei

weighted by the relative probability of occurrence of a single state of energy Ei.
The product of the rapidly decreasing and increasing functions exp(−βE) and
Ω(E,N) possesses a pronounced maximum at the energy characterizing the microca-
nonical ensemble. Similarly, grouping all system realizations with the same total
number of particles Ni into an inner sum recasts Equation (23.4.5) as

Z β,αð Þ =
X
Ni

e−αNi z β,Nið Þ ð23.4.15Þ

The partition functions for indistinguishable particles in the classical limit for
which exp(−βεr − α)� 1 follow from Equation (23.4.6). In this limit, from
Equation (23.4.4), �ni≈ exp −βεr −αð Þ, and therefore, (i) N =

P
l ni =

P
i exp(−βεi

− α) = exp(−α)zi where zi is the single particle canonical partition function so that
(ii) α = ln(zi/N). For, a classical system with total particle number, N, recalling that
ln(1 + ε)≈ ε, ln z = αN + ln Z≈ αN +

P
i ln(1 + exp(−βεi − α))≈ αN +

P
i exp(−βεi

− α), and hence, substituting (i) and (ii), ln z = N ln(zi/N) +N =N ln zi − N lnN +N,
Which yields z= zNi =N!, from Simpson’s rule. The 1/N ! factor corrects for overcount-

ing states that differ only by particle exchange. Such a factor does not appear, e.g., for

internal degrees of freedom such as the vibrational or rotational excitations of atoms

or molecules that are localized to a single particle and therefore distinguishable.

23.5 DENSITY OF STATES

If periodic boundary conditions are imposed at the edges of a three-dimensional
homogeneous (i.e., uniform) cubic solid with sides of length L, the confined eigen-
modes, given by exp (±i2πlx/L) exp (±i2πmx/L) exp (±i2πnx/L) exp (−iωlmnt), are
comprised wavevectors spaced by Δk≡ 2π/L in each coordinate direction.
Hence, a single mode occupies a volume (Δk)3 = 8π3/L3 in three-dimensional

wavevector space, while more generally, in a 2Nd-dimensional phase space in

Nd dimensions, Δpð ÞNd Δxð ÞNd = hNd . The number of states Νtotal(k) with wavevectors
less than k equals the volume of a sphere of radius k divided by the phase space volume
of a state. For electron wavefunctions, multiplying by two to incorporate the spin
polarizations for each spatial state,
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Νtotal kð Þ = 2|{z}
polarizations

L3

2πð Þ3
4π
3
k3 ð23.5.1Þ

This result with an appropriate polarization factor applies to any system described by a
wave equation. Since k =

ffiffiffiffiffiffiffiffiffi
2mE

p
=ℏ,

Νtotal Eð Þ = V

ℏ3

1
3π2

ffiffiffiffiffiffiffiffiffi
2mE

p� 	3=2 ð23.5.2Þ

in which V = L3 is the sample volume. If zero boundary conditions are instead applied,
the eigenmodes, sin nπx/L sinmπy/L sin pπz/L exp(−iωnmpt), are formed from the sum
of equal positive and negative traveling wave components in each coordinate direc-
tion. Adjacent k values are then spaced by Δk = π/L along each coordinate direction,
yielding (ΔW)3 = π3/L3. However, Equation (23.5.1) still applies as, e.g., both sin(kx)
and sin(−kx) describe the same field after normalization and thus only 1/8 of the sphere

of k
!
values contributes to Νtotal(E).

For a spinless particle inNd dimensions, or withNd = 3N forN particles in 3 dimen-
sions, the corresponding phase space possesses 3N spatial dimensions and
Equation (23.5.2) becomes

Νtotal Eð Þ = 2ξ L

2π

� �Nd 2mEð Þ
Nd
2

ℏNd
ð23.5.3Þ

where the constant ξ is given by Equation (8.1.5). This yields the density of states,
which represents the number of states per unit volume:

Ρ Eð Þ= 1
V

∂Νtotal Eð Þ
∂E

/ENd=2−1≈ENd=2 ð23.5.4Þ

Finally, in a system ofK one-dimensional harmonic oscillators with average energy E,
themotion of each oscillator, i, describes an ellipse in phase spacewith p2/2m + kx2/2 =
E. Hence, Νtotal(E) is proportional to the volume of 2K-dimensional phase space con-
fined within a hyperellipse of average radius E and is therefore to EKwithout a V or LK

volumedependence (asmomentumand position variables are functionally equivalent).

23.6 TEMPERATURE AND ENERGY

The temperature of a system is defined as the change in its energy per unit change in
entropy (at fixed volume and number of particles):

T =
∂E

∂S

����
V ,N

ð23.6.1Þ
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While the entropy and energy are proportional to the system size and are thus termed
extensive, the temperature does not depend on V and is labeled intensive.

Example

In a system of N spins with levels at 0 and E, if a single spin is excited to E (at an
unknown location) when all other spins are in the zero state, ΔS/ k lnN is large
and hence T≈ 0 for large N, while when all spins are randomly oriented, a spin
change does not affect S, implying T =∞.

From the dependence of the entropy on energy and volume, the energy and
pressure can be related to temperature. Thus, e.g., the microcanonical entropy for
N free particles with 3N degrees of freedom, from the discussion of the previous
section, where ϖ represents a constant factor,

S E,Vð Þ = k lnΩ E,Vð Þ≈k ln ϖVNE
3N
2

� 	
=Nk ln V +

3
2
ln E +ϖ0

� �
ð23.6.2Þ

implies
1
T
=
∂S

∂E

����
V

=
3
2
Nk

E
ð23.6.3Þ

or, in terms of the number of moles n with Nk = nR in which the ideal gas constant
R = 8.31 J/(mol �K),

E =
3
2
NkT =

3
2
nRT ð23.6.4Þ

Additionally, if a system performs work by displacing a surface element A
a distance Δx against an inward pressure, its decrease in energy is ΔE = −FΔx =
−(F/A)AΔx = −pΔV with

p = −
∂E S,Vð Þ

∂V

����
S

=

∂S

∂V

����
E

∂S

∂E

����
V

= T
∂S

∂V

����
E

ð23.6.5Þ

according to Equation (7.1.7). Inserting Equation (23.6.2) for S yields the ideal
gas law

p =
NkT

V
ð23.6.6Þ

If further, e.g., magnetic or electric fields with strengths χ(i) are present, in analogy

with ΔE = − F
! �Δ x!, generalized forces are defined by

f ið Þ = −
∂E

∂χ ið Þ

����
S,V

ð23.6.7Þ

In the canonical ensemble, the ideal gas law follows by applying Equation (23.4.10)
to either z = zi

N/N ! for N indistinguishable particles or from z= zNi for distinguishable
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particles where zi denotes the canonical partition function for a single particle confined
to a cubic region. With zero boundary conditions so that pi = ℏki = ℏπni/L = hni/2L and
applying the classical approximation in the last step,

zi =
X∞

nx,ny,nz = 0
e−

βπ2 ℏ2

8mL2
n2x + n

2
y + n

2
zð Þ =

X∞
nx = 0

e−
βh2 n2

8mL2

 !
3

≈
ð∞
0
e−

βh2 n2

8mL2 dn

� �
3

=
L

h

ð∞
−∞

e−
p2

2kTmdpx

� �
3

ð23.6.8Þ

Performing the integration according to
Ð ∞
−∞ exp −x2ð Þdx= ffiffiffi

π
p

,

zi =
L

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkT

p� �3

=
V

h3
2πmkTð Þ32 ð23.6.9Þ

More generally, Equation (23.6.4) follows from the equipartition theorem, which
if the energy for a degree of freedom J (associated with either a momentum or a posi-
tion coordinate) possesses the form, in which where the index i = 1, 2,… J − 1, J + 1,
… does not include J,

E =E0 αið Þ + cα2J ð23.6.10Þ

the coordinate J contributes �εJ = kT=2 to the average system energy, as evident from
Equation (23.4.10) with

zJ /
ð∞
−∞

e−cβα
2
J dαJ =

ffiffiffiffiffi
π

βc

r
ð23.6.11Þ

Examples

For a single harmonic oscillator with E = p2/2m + kx2/2, �ε =�εp +�εx = kT . For a dia-
tomic molecule with three translational and two degrees of rotational freedom, the
corresponding average energy �ε= 5kT=2.

From the equipartition theorem, the thermal energy of a solid with N atoms
and hence 3N degrees of freedom expressed in normal coordinates equals

E =
P3N

i= 1 p2i =2m+ kx2i =2
� �

, so that �E = 3NkT , termed the law of Dulong and Petit.
At low temperatures however many oscillators occupy their ground states invalidating
the Boltzmann distribution. The energy can then instead be obtained from the single
harmonic oscillator canonical partition function:

zi =
X∞
m= 0

e−β m + 1
2ð Þℏω = e−βℏω2

X∞
m = 0

e−βmℏω =
e−β

ℏω
2

1−e−βℏω
ð23.6.12Þ
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where Equation (4.1.24) for the sum of a geometric series has been applied.
Accordingly,

�E = −3N
∂ ln zi
∂β

= 3N
1
2
ℏω+

ℏωe−βℏω

1−e−βℏω

� �
= 3Nℏω

1
2
+

1
eβℏω−1

� �
ð23.6.13Þ

The quasiclassical result �E≈3N ℏω=2 + kTð Þ is recovered when kT� ℏω or, in terms
of the Einstein temperature TE = ℏω/k, T� TE, for which the denominator of the sec-
ond term approaches βℏω.

23.7 PHONONS AND PHOTONS

Small-frequency, long-wavelength lattice vibrations termed acoustic phonons result
from both shear and compression waves, which are respectively associated with trans-
verse and longitudinal displacements of successive planes of atoms. Since a crystal
with N atoms thus possesses 3N acoustic modes, each occupying a k-space volume
(Δk)3 = (2π)3/V, the maximum crystal wavevector is found by setting the total number
of acoustic modes with k < kmax equal to 3N:

3N =Νtotal kmaxð Þ = 3|{z}
polarizations

V

2πð Þ3
4
3
πk3max ð23.7.1Þ

As ω/k = v = csound, with csound the sound velocity, the corresponding maximum or
cutoff frequency is

ωmax = 2πcsound
3Ntotal

4πV

� �1
3

ð23.7.2Þ

The energy spectrum, i.e., the energy present between ω and ω + dω, then follows
from Equation (23.6.13), where θ(x) denotes the Heaviside step function, which
equals unity for positive x and zero for x < 0,

E ω,Tð Þdω= 3|{z}
number of
polarizations

� θ ωmax−ωð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
occupation probability

of a state with frequency ω

� ℏω
1
2
+

1

e
ℏω
kT −1

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
energy of excitation
with frequency ω

� 4π

2πcsoundð Þ3ω
2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
density of states Ρ ωð Þ=3
for one polarization

Vdω

ð23.7.3Þ
The total acoustic phonon energy is obtained by integrating Equation (23.7.3) up to
the cutoff frequency:

�E Tð Þ = 3Vℏ
2π2c3sound

ðωmax

0

1
2
+

1

e
ℏω
kT −1

� �
ω3dω ð23.7.4Þ
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The second term in the integral is approximately constant until ℏω≈ kT and then falls
rapidly with ω. Its contribution to �E Tð Þ can therefore be approximated by integrating
ω3 from 0 to kT/ℏ and is therefore proportional to T4 from which Cv≡ ∂E/∂TjV/ T3.
At room temperature ℏω� kT so that exp(ℏω/kT)≈ 1 + ℏω/kT, yielding the law
of Dulong and Petit in the form E = 3NkT + constant after integration from
Equation (23.7.2).

Thermal radiation from electromagnetic modes in a cavity is termed black body
radiation. The spectrum follows from Equation (23.7.3), by substituting the Bose–
Einstein state occupation probability n(ω) = 1/(exp(ℏω/kT) − 1) for θ(ωmax −ω),
replacing the excitation energy by ℏω and the three acoustic polarizations by two
electromagnetic polarizations. Accordingly,

ε ω,Tð Þdω= 2 � 1

e
ℏω
kT −1

�ℏω � 1
2π2c3

ω2

|fflfflfflfflffl{zfflfflfflfflffl}
Ρ ωð Þ=2

dω ð23.7.5Þ

where ε(ω, T) = E(ω, T)/V represents the energy density of the electric field in the
cavity. For kT� ℏω, Equation (23.7.5) approaches kTΡ(ω)dω yielding an energy
of kT/2 for each degree of freedom in a unit volume, termed the Rayleigh–Jeans
law. The energy density then initially increases with ω as ω3, attaining a maximum
at ≈ 3kT/ℏ (termed Wien’s displacement law). The total radiated energy varies as
T4, similar to phonons, and is expressed as 4σT4/c, with the Stefan–Boltzmann
constant σ = 5.67 × 10− 8W/m2 �K4.

23.8 THE LAWS OF THERMODYNAMICS

Thermodynamics can be derived from four basic principles that apply to thermally
isolated equilibrium systems.

1. Two systems in thermal equilibrium with a third system are in mutual thermal
equilibrium

2. Every system possesses an internal energy, E, which is time independent for a
thermally isolated, constant volume system in equilibrium. The internal energy
increases as heat, Q, is added to the system and decreases when work, W, is
performed by the system, according to

Efinal−Einitial =Qabsorbed by system−Wperformed by system ð23.8.1Þ

This effectively corresponds to a restatement of energy conservation. Heat and
energy are often measured in calories (or kilocalories) with 1 cal equal to

4.184 J, the approximate amount of energy required to raise the temperature

of 1 g (kg) of water by 1�.
3. A thermodynamic system further possesses an entropy, S, with the property

that in any process the entropy change of an isolated system, ΔS ≥ 0. Further,
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for infinitesimal quasistatic processes that remain near an equilibrium state at
all times,

Sfinal−Sinitial =
ΔQabsorbed by system

T
ð23.8.2Þ

The second law possesses numerous equivalent reformulations, such as the
impossibility of extracting and transforming heat into work from a source with
a spatially uniform temperature.

4. AsT! 0,Sapproachesaconstantvalue that isdeterminedbythemicroscopicnature
of the system (e.g., for 5 electrons distributed among the ground states of 10 atoms,

the entropy S = −k
P10

i= 1pi ln pi approaches 5k ln 2 since for each atom pi = 1/2).

To relate the entropy and energy of a system, consider its average energy:

E ξ
!� 	

=
X
m

pmEm ξ
!� 	 ð23.8.3Þ

where Em and pm are the energies and occupation probabilities of each quantum state

and ξ
!
represents the collection of macroscopic parameters such as volume and electric

field upon which the system energy depends. Denoting by f (l) the generalized force
associated with the variable ξ(l) and further defining ΔQ and ΔW as the heat flowing
into and the work performed by the system, respectively, a transformation to an
infinitesimally different system configuration changes the energy of the system by

ΔE =
X
m

ΔpmEm

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ΔQ

+
X
m

pmΔEm

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
−ΔW

=ΔQ+
X
l

X
m

pm
∂Em

∂ξ lð ÞΔξ
lð Þ =ΔQ−

X
l

f lð ÞΔξ lð Þ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ΔW

ð23.8.4Þ

Here, ΔW = −
P

mpmΔEm results from changes in the individual energy levels, ΔEm,
induced by changes in system variables such as displacements of a container wall in
contrast to ΔQ =

P
mΔpmEm, which arises from changes to the occupation probabil-

ities for fixed energy levels. While ΔE according to Equation (23.8.3) depends only

on the initial and final states, ΔQ and ΔW are affected by the nature of the transition

between these two states. For example, a gas that is first cooled, decreasing its
pressure, performs less work upon expanding to a larger volume than if it is first
expanded and then cooled to reach the same final state. In a slow, quasistatic process,

however, in which the system remains infinitesimally close to an equilibrium state,

the work, W, is uniquely defined by the initial and final states according to

W =
P

l

Ð final
initial f

lð Þdξ lð Þ so that the heat transferred equals ΔE +W. Further, in an

adiabatic process, the system is thermally isolated and consequently, ΔQ = 0 in

Equation (23.8.4). (This does not require Δpm = 0, since if a system is composed
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of nonidentical subsystems whose energy levels become coincident at some point in
time during the process, their occupation probabilities can equilibrate, altering Δpm.)
As the difference in energy of the initial and final states equals Einitial − Efinal =ΔW in
an adiabatic process, such processes are reversible as undoing the displacement
returns the system to its original energy state. For a nonadiabatic process, the
amount of heat supplied equals the sum of the work performed by the system

W =
P

l

Ð final
initialf

lð Þdξ lð Þ and the energy difference between the initial and final states

measured in an adiabatic process. Lastly, from the third law of thermodynamics

Dividing ΔQ by the temperature yields an entropy change ΔS =ΔQ/T = (1/T)
P

mEmΔpm, which depends uniquely on the initial and final states.

Example

To construct an absolute temperature scale, a system is placed in contact with a
heat reservoir at a temperature Ti and a predetermined amount of heatΔQi is added,
resulting inΔS1 =ΔQi /Ti. If the system then evolves into a final state (by changing
values of variables such as pressure) with a temperature, Tf, through an adiabatic
ΔS = 0 process, the overall change in energy is identical to that generated by first
performing an adiabatic process to raise the temperature to Tf and then addingΔQf

= TfΔS2 until the same final state is reached. From ΔS1 =ΔS2, the initial and final
temperatures are related by Tf /Ti =ΔQf /ΔQi.

23.9 THE LEGENDRE TRANSFORMATION
AND THERMODYNAMIC QUANTITIES

The laws of thermodynamics together with the definitions ofΔW andΔS indicate that in
a thermally isolated systemwith fixed volume, the system energy is a unique function of
the entropy and volume (assuming the absence of other generalized forces than the pres-
sure). However, for a system held at constant pressure and/or temperature, the volume
and/or entropy fluctuates with time, motivating the introduction of redefined “energies”
that depend on the constant variables. Since T = ∂E/∂SjVwhile p = −∂E/∂VjS, to replace,
e.g., S by T as an independent variable, the Helmholtz free energy, F, is defined as a
Legendre transformation corresponding to the y-intercept of the tangent to the curve
for the energy as a function of S:

F T ,Vð Þ =E S,Vð Þ− ∂E S,Vð Þ
∂S

S =E S,Vð Þ−TS ð23.9.1Þ

Since if E varies linearly with S, the y-intercept F is independent of S, changes in
F only arise from variations in the slope, T. Thus, F is determined by T rather than S.
Indeed, from Equation (23.9.1),

dF = dE−SdT −TdS = −pdV −SdT ð23.9.2Þ
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confirming that F depends only on T and V. The resulting partial derivative pair

∂F

∂V

����
T

= −p

∂F

∂T

����
V

= −S

ð23.9.3Þ

are termed equations of state. Maxwell’s relations follow from the mixed partial
derivative relation ∂2/∂x∂y = ∂2/∂y∂x, which gives, e.g.,

−
∂S

∂V

����
T

=
∂2F

∂V∂T
=

∂2F

∂T∂V
= −

∂p

∂T

����
V

ð23.9.4Þ

Similarly, p can replace V as a variable in systems held at fixed pressure by con-
structing the enthalpy

H S,pð Þ =E + pV ð23.9.5Þ

If both T and p are held constant, the Gibbs free energy is given by

G T ,pð Þ =H−TS=E−TS+ pV ð23.9.6Þ

The quantities {E, F,G,H} and {p, V, S, T} are termed thermodynamic potentials
and variables, respectively. The potentials are independent of the process employed
to reach a given equilibrium state of a system. While p and T are intensive, i.e.,
independent of the system dimensions, all other variables and potentials are
extensive quantities that scale with system size. Intensive quantities are typically
denoted by small letters except where confusion results (such as between T and
time, t). The thermodynamic relationships are summarized in the thermodynamic

square of Figure 23.1, which can be recalled through the mnemonic “to verify fun-

damental thermodynamics, get powerful help from square’s extremities” where

“to” and “from” indicate the direction of the diagonal arrows.
Each thermodynamic potential, situated at the middle of a side, is a function of the

variables at its two adjacent corners. Arrows pointing toward and away from a corner
are associated with a negative and positive sign, respectively. Thus, dF = −pdV − SdT
(as well asF = E − TS) follows from the arrow pointing from S toT, implying ∂F=∂TjV =
−S and p = −∂F=∂V. The Maxwell relation

∂T=∂V jS = −∂p=∂SjV ð23.9.7Þ

is obtained by starting with T and cycling counterclockwise around two corners to
generate ∂T=∂VjS. Similarly, cycling clockwise two corners from p yields ∂p=∂SjV.
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Since the arrows toward the starting points T and p are oppositely directed, these two
expressions possess opposite signs in Equation (23.9.7).

Derivatives of thermodynamic quantities are often expressed in terms of
those of other quantities, in particular the Gibbs free energy G(T, p) as T and
p are often most readily controlled and thus amenable to measurements. Here,
Cp with

∂2G

∂T2
= −

∂S

∂T

����
p

= −
Cp

T
ð23.9.8Þ

and κisothermal and κadiabatic defined by

∂2G

∂p2
=
∂V

∂p

����
T

= −Vκisothermal, −
1
V

∂V

∂p

����
S

= κadiabatic ð23.9.9Þ

(where again ∂G/∂pjT = V in κadiabatic) are termed the (extensive) specific heat at
constant pressure and the isothermal compressibility and adiabatic compressibility,
respectively. Both compressibilities and the further volume coefficient of expan-
sion, α,

∂2G

∂T∂p
=
∂V

∂T

����
p

=Vα ð23.9.10Þ

are intensive as doubling the system volume doubles the volume variation induced
by a pressure change. The specific heat at constant volume, CV, is then defined
analogously to Equation (23.9.8), namely (note that ∂G/∂Tjp = −S),

V

G

PHS

E

F T

FIGURE 23.1 Thermodynamic square.
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∂S

∂T

����
V

=
CV

T
ð23.9.11Þ

which can be eliminated in favor of the other quantities since, from Equation (7.1.11),

CV =
∂S

∂T

����
p

+
∂S

∂p

����
T

∂p

∂T

����
V

=
∂S

∂T

����
p

+
∂V

∂T

����
p

∂p

∂T

����
V

=
∂S

∂T

����
p

+
∂V

∂T

����
p

∂V

∂T

����
p

∂V

∂p

����
T

=Cp−
α2VT

κisothermal

ð23.9.12Þ

For an ideal gas, pV = nRT implies both dV/Vjp = dT/Tjp and therefore α = 1/T, while

dV/VjT = −dp/pjT similarly yields κisothermal = 1/p. Hence, Cp −CV = R, while E = 3RT/2

implies CV = 3R/2.
To express derivatives of thermodynamic variables in terms of typically conven-

ient quantities, partial derivatives at fixed values of the thermodynamic potentials are
written as quotients of partial derivatives of the potentials that can be evaluated with
the thermodynamic square. For example,

∂T

∂V

����
E

= −

∂E

∂V

����
T

∂E

∂T

����
V

= −

T
∂S

∂V

����
T

−p

T
∂S

∂T

����
V

ð23.9.13Þ

Derivatives of the entropy at fixed p or V are then expressed as temperature derivatives
through the Maxwell relations by manipulations such as (cf. Eq. 7.1.9)

∂S

∂V

����
p

=

∂S

∂T

����
p

∂V

∂T

����
p

ð23.9.14Þ

The temperature derivatives of the entropy yield Cp and CV, while the remaining
partial derivatives are transformed into volume derivatives, according to, e.g.,

∂p

∂T

����
V

= −

∂V

∂T

����
p

∂V

∂p

����
T

ð23.9.15Þ

After replacing the volume derivatives by κ and α, Equation (23.9.12) is finally
employed to eliminate CV.

406 THERMODYNAMICS AND STATISTICAL MECHANICS



23.10 EXPANSION OF GASES

From pV = nRT, if an ideal gas expands isothermally (at constant T),

p2−p1 = nRT
ðV2

V1

1
V
dV = nRT log

V2

V1

� �
ð23.10.1Þ

Under adiabatic expansion, with zero heat transfer to the surroundings,

∂V

∂p

����
S

= −

∂S

∂p

����
V

∂S

∂V

����
p

= −

∂S

∂T

����
V

∂p

∂T

����
V

∂V

∂T

����
p

∂S

∂T

����
p

= −

CV

T

−

∂V

∂T

����
p

∂V

∂p

����
T

∂V

∂T

����
p

Cp

T

=
CV

Cp

∂V

∂p

����
T

= −
CV

Cp

nRT

p2
= −

CV

Cp

V

p

ð23.10.2Þ

Accordingly,

ðV2

V1

1
V
dV = log

V2

V1

� �
= −

CV

Cp

ðp2
p1

1
p
dp= −

CV

Cp
log

p2
p1

� �
= − log

p2
p1

� �CV
Cp ð23.10.3Þ

so that

p
CV
Cp V = constant ð23.10.4Þ

This result can also be obtained by noting that dS = 0 implies dE = −pdV with dE =
3RdT/2 =CVdT, while pV = nRT simultaneously implies pdV + Vdp = nRdT. Eliminat-
ing dT,

pdV +Vdp= −
RpdV

CV
ð23.10.5Þ

or

pdV CV +Rð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Cp

+VCVdp= 0 ð23.10.6Þ

Quasistatic, reversible isothermal expansion in an insulated container is typified by
action against a slowly moving piston. Employing the Maxwell relation for ∂S/∂VjT,

∂E

∂V

����
T

= T
∂S

∂V

����
T

−p= T
∂p

∂T

����
V

−p = −T

∂V

∂T

����
p

∂V

∂p

����
T

−p =
Tα

κisothermal
−p ð23.10.7Þ
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For an ideal gas, Tα = pκisothermal = 1 (cf. the derivation in Eq. 23.9.12), implying
∂E/∂VjT = 0 as required since the energy only depends on temperature from E = 3kT/2.
However, in an imperfect, van der Waals gas, the finite size of the molecules limits
the accessible volume, while the pressure is reduced by the attractive forces between
molecules. This results in an approximate equation of state for one mole of a gas:

p =
RT

V −b
−

a

V2
ð23.10.8Þ

Inserting into the second equation of Equation (23.10.7), namely, T∂p/∂TjV − p, yields
∂E/∂VjT = a/V2. Hence, as the confining volume is increased, the effective molecular
attraction is reduced, which augments the energy.

Irreversible processes leading to an entropy gain in a thermally isolated system are
typified by free expansion in which opening a valve enables a gas to expand suddenly
from a volume Vi to Vf. Since the gas is isolated and does not perform work against a
force, ΔQ =ΔW = 0. From ΔE =ΔQ −ΔW, energy is conserved and

∂T

∂V

����
E

= −

∂E

∂V

����
T

∂E

∂T

����
V

= −
1
CV

Tα−pκisothermal

κisothermal

� �
ð23.10.9Þ

which equals zero for an ideal gas and − a/CVV
2 for a van der Waals gas.

Finally, in Joule–Thomson expansion, a gas passes through a porous material
inside a thermally isolated cylinder such that the pressure differs on the two sides
of the cylinder while ΔQ = 0. If a volume V1 of gas enters the cylinder at pressure
p1 and exits as V2 at p2, the energy change equals the net work performed on the
gas; i.e., after integrating dE = −pdV from V1 to V2,

E2−E1 = p1V1−p2V2 ð23.10.10Þ

Hence, the enthalpy H(S, p) = E + pV remains constant, consistent with the system
being determined by the time-independent entropy and pressure. Accordingly,

∂T

∂p

����
H

= −

∂H

∂p

����
T

∂H

∂T

����
p

= −

T
∂S

∂p

����
T

+V

T
∂S

∂T

����
p

=

T
∂V

∂T

����
P

−V

Cp
=
V Tα−1ð Þ

Cp
ð23.10.11Þ

For an ideal gas, Tα = 1 and Equation (23.10.11) vanishes. AlthoughΔQ = 0, the proc-
ess is not quasistatic as the entropy increases according to

∂S

∂p

����
H

= −

∂H

∂p

����
S

∂H

∂S

����
p

= −
V

T
ð23.10.12Þ
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23.11 HEAT ENGINES AND THE CARNOT CYCLE

An engine extracts energy from heat to perform work while its inverse mode of
operation produces a refrigerator or heat pump that employs work to extract heat
energy. The most efficient engine utilizes quasistatic processes and is reversible
and cyclic, in that the entropy and energy revert to their original values after a stroke.
If the engine subsystem extracts heat Qh from a heat bath at Th and subsequently
evolves to Tc through a thermally isolated, adiabatic process with zero entropy change
in which work is performed and then discards a smaller amount of heat Qc to a bath at
Tc before evolving again adiabatically to its initial state, zero net entropy for the entire
system after change a cycle implies

ΔStotal =ΔSc +ΔSh =
Qc

Tc
−
Qh

Th
= 0 ð23.11.1Þ

or

Qc =Qh
Tc
Th

ð23.11.2Þ

Since the energy also remains invariant after a cycle, the engine performs an amount
of work

W =Qh−Qc =Qh 1−
Tc
Th

� �
≡Qhη ð23.11.3Þ

where η is termed the efficiency. In a refrigerator, the work source instead transfers
heat from the colder to the warmer source (this is also the principle of operation of
a heat pump, which however instead exploits the heat created by the process).
Work is thus performed on the refrigerator rather than by the engine, reversing
the direction of heat flow. Since all variables earlier therefore change sign,
Equation (23.11.3) remains invariant although for a refrigerator the expression is
generally rewritten as

W =Qh−Qc =Qh 1−
Tc
Th

� �
=Qc

Th
Tc

1−
Tc
Th

� �
=Qc

Th
Tc

−1

� �
ð23.11.4Þ

A cyclic Carnot engine can be formed from a gas container with a movable piston
that is alternately placed in contact with a high and a low temperature source. The gas
is initially at a high temperature Th and occupies a large volume. In the first step
(cf. Figure 23.2), the gas contacts a low-temperature heat source at Tc and is com-
pressed isothermally and quasistatically, transferring ΔQ =

Ð
TcdS = TcΔS to the cold

source while work ΔW =
Ð
pdV =

Ð
(nRTc/V)dV is performed against it. Next, the gas

is thermally isolated and compressed adiabatically (ΔS = 0) with ΔQ =
Ð
TdS = 0

while the piston does additional work on the gas that can be computed from the adi-
abatic law (23.10.4). The system is then placed in contact with the reservoir at Th and
expands isothermally. Finally, the container is again isolated and the gas expands adi-
abatically until it returns to its initial state.

409HEAT ENGINES AND THE CARNOT CYCLE



23.12 THERMODYNAMIC FLUCTUATIONS

The properties of fluctuations in a statistical mechanical system depend on which of
the thermodynamic variables E, S, T or p, are held constant at its boundaries. For two
distinguishable ideal gas systems 1 and 2 in thermal contact, i.e. that can exchange
energy but otherwise isolated, the microcanonical partition function of the overall sys-
tem is formed from the product of the individual partition functions. If the total energy
of the two systems and the energy of system 1 subject to a fluctuation of magnitude
ΔE from its equilibrium energy E1 equal E and E1 +ΔE, respectively,

Ωtotal E,E1 +ΔEð Þ = Ω1 E1 +ΔEð ÞΩ2 E−E1−ΔEð Þ

= e
ln Ωtotal E,E1ð Þð Þ+ ∂ ln Ω1 E1ð Þð Þ

∂E1
+

∂ ln Ω2 E−E1ð Þð Þ
∂E1

� 	
ΔE + 1

2

∂2 ln Ω1 E1ð Þð Þ
∂E2

1

+
∂2 ln Ω2 E−E1ð Þð Þ

∂E2
1

� �
ΔEð Þ2 +…

ð23.12.1Þ

The maximum of lnΩtotal(E1, Etotal) with respect to E1 yields the system equilibrium
point at which

∂ lnΩ1 E1ð Þ
∂E1

+
∂ lnΩ2 E−E1ð Þ

∂E1
=
∂ lnΩ1 E1ð Þ

∂E1
−
∂ lnΩ2 E−E1ð Þ

∂ E−E1ð Þ = 0 ð23.12.2Þ

Since S = −k lnΩ and T = ∂E=∂S, the two systems possess equal temperatures. Fur-
ther, if the two systems are composed of ideal gases, writing the exponential function

as exp − ΔEð Þ2=2ΔE2
� 	

and recalling that in the microcanonical ensemble,Ω(E, V) =
VNE3N/2 from Equation (23.5.3) with E = 3NkT/2,

1

ΔE2
≈ −

3
2

N1
∂

∂E1

1
E1

� �
+N2

∂

∂E2

1
E2

� � �
=
2
3

1

kTð Þ2
N1 +N2

N1N2
ð23.12.3Þ
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V
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3

4
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4

FIGURE 23.2 Carnot cycle.
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If N1�N2, ΔE2 = 3 kTð Þ2=2, which also follows directly from the Boltzmann
distribution since the density of states is proportional to

ffiffiffiffi
E

p
while �E = 3kT=2,

E2 − �E2 =

ð∞
0
E

5
2e−

E
kTdE

ð∞
0
E

1
2e−

E
kTdE

− �E2 =
kTð Þ72Γ 7

2

� �

kTð Þ32Γ 3
2

� � −
3
2
kT

� �2

= kTð Þ2 5
2
� 3
2
−

3
2

� �
2

� �

ð23.12.4Þ

For a system in contact with a heat reservoir at temperature and pressure Tres = Tsys
and pres = psys, as the equilibrium state of a system maximizes the sum of the entropy
of the system with its surroundings, for fluctuations around the equilibrium state,
ΔStot = Ssys + Sres < 0. A fluctuation that augments the energy and volume of the sys-
tem byΔE andΔV oppositely impacts the reservoir, for whichΔEres = −ΔE andΔVres

= −ΔV, changing its entropy by

ΔSres =
ΔQres

Tres
= −

ΔE + presΔV
Tres

ð23.12.5Þ

The total entropy variation is therefore given by

ΔSsys +ΔSres =ΔSsys−
ΔE + presΔV

Tres
= −

ΔE−TresΔSsys + presΔV
Tres

= −
ΔGsys

Tsys
< 0

ð23.12.6Þ

Accordingly, at equilibriumG is a minimum in a system at fixed T and p. If the system
volume is fixed, the ΔV terms above are absent and F is instead minimized; if such a
system is thermally isolated, E attains a minimum, while for a thermally isolated
system at constant pressure, H is minimized. These considerations follow naturally
by associating the fluctuating variables with the arguments of the relevant thermody-
namic potential.

Suppressing the subscript on pres and tres, the fluctuation probability is given by

e
ΔStot
k = e−

ΔG
kT ≈e

− 1
kT Emin + .ΔS∂E∂SjV + ΔV ∂E

∂VjS + ΔSð Þ2
2

∂2E
∂V2

��
V
+ 2ΔSΔV ∂2E

∂S∂V +
ΔVð Þ2
2

∂2E
∂V2

��
T
− .TΔS+ pΔV

� �

ð23.12.7Þ

This exponent can be rewritten as, by employing Δf(S, V) = ∂f=∂SjVΔV + ∂f=∂VjSΔS
with f representing separately ∂E/∂S and ∂E/∂V,

1
2

Δ
∂E

∂S

����
V

� �
ΔS +Δ

∂E

∂V

����
S

� �
ΔV

� �
=
ΔTΔS−ΔpΔV

2
ð23.12.8Þ
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Since, however, any pair of the variables {T, S, p, V} are uniquely specified by the
values assigned to the remaining two, the variation in the system must be specified
as a function of only two of these quantities as independent variables; the remaining
two are then termed derived variables. Setting

ΔS=
∂S

∂T

����
V

ΔT +
∂S

∂V

����
T

ΔV =
CV

T
ΔT +

∂p

∂T

����
V

ΔV

Δp=
∂p

∂T

����
V

ΔT +
∂p

∂V

����
T

ΔV =
∂p

∂T

����
V

ΔT −
1

κisothermalV
ΔV

ð23.12.9Þ

yields the probability of a fluctuation in the form

p/ e
−1
2

ΔTð Þ2
σT

2 + ΔVð Þ2
σV

2

n o
ð23.12.10Þ

with σT = Tres
ffiffiffiffiffiffiffiffiffiffiffi
k=CV

p
and σV =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTresVκisothermal

p
. Therefore, if both cv > 0 and

κisothermal > 0, the system is stable. That is, if increasing the pressure on a system at
constant T decreases its volume, compressing the gas from equilibrium generates a
restoring force. Similarly, if raising the temperature at constant V increases S, rever-
sing the direction of entropy flow by transferring entropy to the reservoir lowers the
system temperature.

23.13 PHASE TRANSFORMATIONS

Generally, materials can exist in several phases, such as solid, liquid, gas, or different
crystalline structures. At fixed temperature and pressure, the global equilibrium
state corresponds to the phase that minimizes the Gibbs free energy. However, if at
some value of T and p the Gibbs free energies of two or more phases coincide,
any ratio of these phases can be present. However, above a certain critical tempera-
ture, Tcritical, only the gaseous phase exists. The value of Tcritical together with the
pressure at which both gaseous and liquid phases coexist just below Tcritical defines
the critical point. Additionally, if a temperature and pressure exist at which G(T, p)
is identical for solid, liquid, and gas phases, the corresponding coordinates T, p are
termed the triple point.

A phase diagram graphs the pressure at which two or more phases coexist as a
function of temperature. Since the coincident phases differ in volume and entropy
per mole, ∂G/∂pjT = V and ∂G/∂Tjp = −S are discontinuous across these lines. The
energy difference of the phases per mole is termed the latent heat and is designated.
Here the value of l = TΔs, where in this section l, s and p denote molar quantities, i.e.,
values per mole, is termed the latent heat. However, as opposed to its derivatives, G
remains continuous as it can be obtained from integrals of the finite quantities V and S.
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Since the Gibbs free energy accordingly coincides along both sides of a transition
line in the phase diagram, for a small displacement (ΔT,Δp) along the line, the Gibbs
free energy changes identically for each phase:

ΔG =
∂G

∂p

����
T

ΔT +
∂G

∂T

����
V

ΔV = −s1ΔT + v1Δp = −s2ΔT + v2Δp ð23.13.1Þ

The Clausius–Clapeyron equation is derived by recasting the above equation as

dp

dT

���� along
transition line

=
s2−s1
v2−v1

=
Δs
Δv

=
l

TΔv
ð23.13.2Þ

Here, dp/dT coincides with the slope of the phase transition line, while Δv designates
the difference in the molar volume between the two phases at two closely separated
points on the transition line. Since melting (or boiling) increases the entropy, if a
substance contracts in such a phase transition, the associated transition line exhibits
a negative slope; otherwise, the slope is positive.

Example

For a transition between a liquid and an ideal gas with a far greater volume,
Δv≈ RT/p and

dp

dT
=
l

R

p

T2
ð23.13.3Þ

Solving for p as a function of temperature from dp/p = (l/R)dT/T2,

p Tð Þ= p T0ð Þe− l
RT ð23.13.4Þ

23.14 THE CHEMICAL POTENTIAL AND CHEMICAL REACTIONS

The chemical potential

μ =
∂E S,V ,Nð Þ

∂N

����
S,V

= −

∂S

∂N

����
V ,E

∂S

∂E

����
V ,N

= −T
∂S

∂N

����
V ,E

ð23.14.1Þ

quantifies the energy gained by the system as a result of its chemical attractive forces
when a particle is displaced from an infinite distance to a point at rest inside the
system. To conceptualize this statement, suppose that a system chemically repels elec-
trons. If an electron requires a minimum kinetic energy equal to μ at infinity in order to
come to rest inside the system, the energy gained by the system by incorporating the
additional particle equals the chemical potential μ. This is equivalent to the work
performed by the system on the particle and hence the potential energy gained by
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the particle. Two systems that exchange particles possess equal chemical potentials in

equilibrium since otherwise particles would move down the potential slope from the

region of higher μ to that of lower μ and thus greater chemical attraction. Normally,
either the variables {T, V} or {T, p} are controlled in which case from, e.g., F = E − TS
together with dE = TdS − pdV + μdN,

μ =
∂F T ,V ,Nð Þ

∂N

����
T ,V

=
∂G T ,p,Nð Þ

∂N

����
T ,p

ð23.14.2Þ

That is, depending on the boundary conditions, the chemical potential can represent
the change in, e.g., the Helmholtz or Gibbs free energy per molecule.

A reaction among interacting species with chemical formulas Χj is described by a
chemical equation X

j

mjΧj = 0 ð23.14.3Þ

where the mj are small integers such as in 2H2 + O2 − 2H2O = 0. At equilibrium, the
energy is minimized implying that, e.g., for a system at fixed V and T, any rearrange-
ment among the species consistent with Equation (23.14.3) does not affect F and
consequently, since ΔNj =mj by definition,

ΔF =
X
j

∂F

∂N

����
T ,V

ΔNj =
X
j

μjΔNj =
X
j

mjμj = 0 ð23.14.4Þ

For an ideal gas of indistinguishable particles, if zj denotes the single particle canon-
ical partition function, from F = −kT ln Z with Z =

Q
i
ziNi=Ni! and N !≈ NNe− N,

μj =
∂F

∂Nj

����
T ,V

≈
∂

∂Nj
−kT

X
l

Nl ln
zl
Nl

+ 1

� � !
≈ −kT ln zj− lnNj

� �
= −kT ln

zj
Nj

ð23.14.5Þ
Inserting into the last equation of Equation (23.14.4) and exponentiating yield the law
of mass action Y

j

Nmj

j =
Y
j

zmj

j ≡K T ,Vð Þ ð23.14.6Þ

Example

For H2$ 2H, NH2= NHð Þ2 =K T ,Vð Þ.

23.15 THE FERMI GAS

Since each spatial electronic state can contain at most one two electrons with opposing
spins, at T = 0, electrons fill all states with energies up to a value of the chemical
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potential termed the Fermi energy, designated εF. At finite temperatures, however, all
states have a nonzero occupation probability. From the Fermi–Dirac distribution, this
quantity is determined for an ideal Fermi gas, typified by a metal of volume V contain-
ing N noninteracting electrons by solving

X
m

1

eβ εm −εFð Þ + 1
≡
X
m

f εmð Þ=N ð23.15.1Þ

The Fermi function f (ε) obeys the relationships f (εF) = 1/2 and f (εF −Δε) =
1 − f (εF +Δε). While at finite temperature Equation (23.15.2) must be approxi-
mated or evaluated numerically, at T = 0, Equation (23.15.1), rewritten as an inte-
gral over energies, becomes, after introducing the density of states Ρ(ε) per unit
volume given by the derivative of Equation (23.5.2),

ð∞
0

1

eβ ε−εFð Þ + 1
Ρ εð Þdε =

ð∞
0
θ εF −εð Þ 1

2π2
2m

ℏ2

� �3
2

ε
1
2dε =

N

V
ð23.15.2Þ

with θ(x) unity for x > 0 and zero for x < 0. Therefore, as can be obtained more
directly by equating the number of states per unit volume within a sphere of
radius kF in wavevector space for a cube of side length L assuming periodic boundary

conditions, namely, 1=Vð Þ × 2 4πk3F=3
� �

= 2π=Lð Þ3 toN/V, and applying ℏ2k2F=2m = εF ,

2
3

1
2π2

2mεF
ℏ2

� �3
2

=
N

V
ð23.15.3Þ

or

εF =
3π2N
V

� �2
3 ℏ2

2m
ð23.15.4Þ

The Fermi temperature, defined by εF = kTF, attains values on the order of tens of
thousands of degrees for most metals.

Example

In a magnetic field at small T, electrons with spins aligned opposite the magnetic

field possess a magnetic potential energy Umagnetic = − m! �H! = μmH and hence
nonmagnetic mechanical energies up to Emechanical = εF −Umagnetic = εF − μmH,
while the mechanical energies of electrons with aligned spins instead extend to
εF + μmH. Hence, more electrons possess aligned spins resulting in paramagnet-
ism. Approximating the Fermi distribution function by unity for εtotal = Emechanical

+Umagnetic < εF and the density of states per unit volume, Ρ(εF), near the Fermi
energy by its value at the Fermi energy, Equation (23.15.3), corrected for the par-
ticipation of only a single unpaired spin state in each alignment process, for a mate-
rial of volume V containing N participating electrons
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Ρ εFð Þ = 1
2
� 1
2π2

2m

ℏ2

� �3
2

ε
1
2

F =
3
4εF

N

V
ð23.15.5Þ

Multiplying the magnetic moment by the width of the energy region, 2μmH, over
which a single spin is aligned parallel to the magnetic field and further by the den-
sity of states per unit volume, which corresponds to the number of such states per
unit energy interval, yields a magnetization per unit volume of

M = μm 2μmHð Þ 3
4εF

� �
N

V
ð23.15.6Þ

and a magnetic susceptibility χ =M=H = 3Nμ2m=2εFV .

23.16 BOSE–EINSTEIN CONDENSATION

In Bose–Einstein materials near T = 0, electrons collect in the ground state rather than
distribute evenly among states as in a Fermi gas. Dividing the electrons into those
occupying the ground state and excited state electrons and replacing sums over the
latter states by integrals over Ρ(ε)Vdε yields

N =Nground +Nexcited =
1

e−βμ−1
+V
ð∞
0
2π

2m
h2

� �3
2 ε

1
2

eβ ε−μð Þ−1
dε ð23.16.1Þ

Reversing the original derivation of the Fermi–Dirac occupation factor,

1

eβ ε−μð Þ−1
=

e−β ε−μð Þ

1−e−β ε−μð Þ = e
β μ−εð ÞX∞

l= 0

elβ μ−εð Þ ð23.16.2Þ

from which

Nexcited = 2πV
2m
h2

� �3
2X∞
l= 1

elβμ
ð∞
0
e− lβεε

1
2dε

= 2πV
2m
h2

� �3
2X∞
l= 1

elβμ
1

lβð Þ32
ð∞
0
e− lβε lβεð Þ12d lβεð Þ

ð23.16.3Þ

Since the integral evaluates to
ffiffiffi
π

p
=2, as T! 0, if the lowest energy level is associated

with zero energy, the chemical potential μmust approach zero sufficiently rapidly that
the first term in Equation (23.16.1) equals the number of nonexcited particles. This
requires exp(lβμ)! 1 for which the sum in Equation (23.16.3) can be approximated
by
P∞

l= 11=l
3=2≈2:61. When T exceeds the condensation temperature Tcondensation

(approximately 3 K for helium) defined by
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N

V
=
Nexcited

V
≡ 2:61

2πmkTcondensation
h2

� �3
2

ð23.16.4Þ

the excited states cannot accommodate the total number of electrons and at least
N −Nexcited particles must accumulate in the ground state, an effect termed
Bose–Einstein condensation occurs. The fraction of atoms in the ground state below
Tcondensation is approximated by

Nground

N
= 1−

T

Tcondensation

� �3
2

ð23.16.5Þ

Since the number of particles in the excited state varies as T3/2 and the energy per par-
ticle grows as kT, the total energy increases as T5/2 while its derivative, the specific
heat, varies as T3/2 above Tcondensation, which is termed a second-order phase transi-
tion. Realistic models that incorporate the details of the particle–particle interaction
predict specific heat discontinuities with more involved properties.

23.17 PHYSICAL KINETICS AND TRANSPORT THEORY

The Maxwell distribution, while derived for a system in contact with a heat reservoir,
also applies to single particles considered as the system of interest where the remain-
der of the actual system acts as a reservoir. The probability, Π, of observing a single
particle in a region d3r d3p of phase space is then

Π r!, p!
� �

d3rd3p= constant �e−β p2

2m+V r
!ð Þ

� �
d3rd3p ð23.17.1Þ

Example

In a spatially varying gravitational potential, the probability of finding a particle
with a given momentum varies with height, z, as ce− βgz.

For a constant potential, integrating over position yields for the mean number of
particles per unit volume with a velocity in a region d3v around v

!, after normalizing to
n =N/V,

ϖ v
!� �
d3v= n

m

2πkT

� 	3
2
e−

mv2
2kT d3v ð23.17.2Þ

Integrating over two components of v! leads to the distribution for a single velocity
component, namely,

ϖ vj
� �

dvj = n
m

2πkT

� 	1
2
e−

mv2j
2kTdvj ð23.17.3Þ
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while the distribution of the magnitude of the velocity (speed) is obtained from
d3v = 4πv2dv:

ϖ vð Þdv= n m

2πkT

� 	3
2
e−

mv2
2kT 4πv2dv ð23.17.4Þ

Accordingly, the most probable velocity is zero, while the most probable speed is at
the maximum

d

dv
v2e−

mv2
2kT

� 	
= 2v−2v

mv2

2kT

� �
e−

mv2
2kT = 0 ð23.17.5Þ

or vmax =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=m

p
. The mean velocity is however given by

�v =
m

2πkT

� 	3
2
4π
ð∞
0
v3e−

mv2
2kT dv=

8kT
mπ

� �1
2

ð23.17.6Þ

The root-mean-squared (r.m.s.) value of each velocity component can be calculated

directly from the equipartition theorem since mv2x=2 = kT=2 or v2x = kT=m, while the

r.m.s. velocity equals mv2=2 =m v2x + v
2
y + v

2
z

� 	
=2 = 3kT=2.

Recalling that the particle flux per unit area through a surface is defined as the num-

ber of particles per unit time crossing a plane of unit area perpendicular to the surface,

for a surface perpendicular to the x-direction, all molecules within a distance vx of the

surface intersect the surface per unit time. Weighting by the probability of vx and inte-
grating over all vx > 0 yield for the flux

F = n
m

2πkT

� 	1
2

ð∞
0
e−

mv2x
2kT
1
2
d v2x
� �

= n
m

2πkT

� 	1
2�1
2
� 2kT

m

� �
=
n�v

4
ð23.17.7Þ

Since the momentum transfer to a wall from a particle with velocity v!is 2mvx, the ideal
gas law can further be derived by computing the pressure, i.e., the momentum transfer
per unit time per unit area

P= n
m

2πkT

� 	1
2

ð∞
0
2mvx

2e−
mv2x
2kT dvx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

m
Ð ∞

−∞
vx2e

−
mv2x
2kT dvx

= 2n
m

2
v2x

� 	
= 2

N

V

kT

2
ð23.17.8Þ

In a cavity at finite temperature, photons associated with the electromagnetic
modes propagate in all directions with an energy density u(T) = 4σT4/cwith an energy
flux within a solid angle dΩ of cu(T)dΩ/4π. Therefore, the energy passing through the
surface per unit time associated with photons propagating at an angle θ with respect to
the normal to the surface is given by

dFenergy =
cu Tð ÞcosθdΩ

4π
=
ccosθu Tð Þ

4π
2π sinθdθ =

cu Tð Þ
2

sin2θdθ ð23.17.9Þ

Integrating between 0 and π/2 yields Fenergy = cu(T)/4 = σT4.
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In transport processes such as particle and heat transfer by diffusion, energy is
transported through a medium by colliding particles. The relationship between micro-
scopic behavior and macroscopic properties is quantified by the average time and
therefore distance (the mean time and free path) between collisions. To estimate these
quantities, note that in a system of particles with effective radii r, each particle collides
with all particles located within a distance 2r of the center of its path yielding a cross
section or effective area for collisions equal to σ = π(2r)2. Additionally, the average

squared relative velocity of two particles v!2
r = v

!
1−v

!
2

� �2
= v

!2
1 + v

!2
2−2v

!
1�v!2

� �2
= 2v!2 ,

so that v
!2
r

� 	
1=2

≈
ffiffiffi
2

p
�vj j. In unit time, a particle collides with all particles within a

cylinder of volume
ffiffiffi
2

p
�vσ so that the mean number of collisions per unit time equals

the average number,
ffiffiffi
2

p
�vσn, of particles in this volume. The average time per collision

equals the reciprocal of this quantity, yielding a mean free path

λfree =
�vffiffiffi
2

p
�vnσ

=
1ffiffiffi
2

p
nσ

ð23.17.10Þ

Often, for simplicity, the velocity is employed in place of the relative velocity, leading
to the above expression without the

ffiffiffi
2

p
factor. As expected, the velocity affects the

number of collisions per second but not the average distance between collisions.
Consider a quantity, Y(x), such as the transverse momentum, temperature, or par-

ticle number along a plane of constant x that is transported by particle motion. From
Equation (23.17.7), n�v=4 particles cross this plane per unit area per second from each
side. Assuming that the value of Y transported by each particle is given by Y at the
average location of its previous collision, the flux of Y is determined by the mean
distance Δx along x traveled by a particle between collisions. As a particle traveling
at an incidence angle θ to a plane x = constant travels an average distance Δx = λfree
cos θ in the x-direction before colliding while the number of particles with a given
value of vx traveling in the + êx direction that cross the plane per unit time is propor-
tional to vx = v cos θ,

Δx =

ð
λfree cosθ�vcosθdΩð

vcosθdΩ
=

ð0
1
cos2θd cosθð Þ

ð0
1
cosθd cosθð Þ

λfree =
2
3
λfree ð23.17.11Þ

Consequently, the flux of Y in the + êx direction along a plane at x = a is given by
+ n�v=4 times Y(a − 2λfree/3) minus the flux in the − êx direction from the particles
at x = a + 2λfree/3. Employing the Taylor series expansion Y(x +Δx)≈ Y(x) +
dY/dx

��
xΔx +…, the net flux of Y can be approximated by

n�v

4
Y að Þ− 2λfree

3
∂Y

∂x

����
a

− Y að Þ+ 2λfree
3

∂Y

∂x

����
a

� �� �
= −

n�vλfree
3

∂Y

∂x
ð23.17.12Þ
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If Y is identified with the mean energy per molecule, ε, in a medium between two
parallel plates held at different T, Equation (23.17.12) represents the heat flux across a
plane parallel to the plates given by

1
A

dQ

dt
= −

n�vλfree
3

dε

dT

dT

dx
≡ −Κthermal

dT

dx
ð23.17.13Þ

where the thermal conductivity, Κthermal, is given in terms of the specific heat per
molecule, cspecific, by

Κthermal =
n�vλfreecspecific

3
ð23.17.14Þ

If Y instead represents the transverse momentum mvz of a particle of mass m
between a stationary plate along x = 0 and a plate at x = a moving in the z-direction,
Equation (23.17.12) yields the shear force per unit area

Fz

A
= −

n�vλfree
3

d mvxð Þ
dx

≡ −η
dvx
dx

ð23.17.15Þ

with a coefficient of viscosity as follows, in which mn = ρ corresponds to the medium
density:

η=
ρ�vλfree

3
ð23.17.16Þ

Finally, if Y is the fraction nimpurity/ntotal of impurities in a medium to the total num-
ber of particles in the media with ntotal� nimpurity, Equation (23.17.12) describes the
impurity transfer per unit area per unit time, i.e., the impurity current density,

Jx = −
ntotal�vλfree

3
1

ntotal

dnimpurity

dx
= −

�vλfree
3

dnimpurity

dx
≡ −D

dnimpurity

dx
ð23.17.17Þ

The diffusion coefficient D equals

D=
�vλfree
3

ð23.17.18Þ

Quasi-one-dimensional impurity motion in, e.g., the êx direction, Jx, obeys a con-
tinuity equation of the form

dJx
dx

= −
∂ρ xð Þ
∂t

= −
∂nimpurity

∂t
ð23.17.19Þ

Inserting Equation (23.17.17) for the impurity current density leads to the one-
dimensional diffusion equation

∂nimpurity

∂t
=D

∂2nimpurity

∂x2
ð23.17.20Þ
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which generalizes in three dimensions to

∂n

∂t
=Dr2n ð23.17.21Þ

Particle diffusion can be modeled with random number generators. The function
rand( ) in Octave, which returns a uniformly distributed number within [0, 1], is
employed in the following code to generate a random walk with steps of unit length
in the positive or negative direction. The final positions of 1000 random walks with
2000 steps each are displayed in a histogram that sums the number of steps within
each 30 uniformly distributed intervals. Associating a time interval Δt = 1 with a
single random walk step, two random walk steps implement f(x, t + 2) − f(x, t) =
(1/4)[f(x − 2, t) + 2f(x, t) + f(x + 2, t)] − f(x, t) with an r.m.s. spread hx2i = 2 after two
steps. Dividing by 2Δt(Δx)2 with Δt =Δx = 1 approximates ∂f/∂t = (1/2)∂2f/∂x2 and
therefore implies D = 1/2 for a large number of steps. The program writes the sum
of the squares of the final positions divided by the total number of steps taken in
all randomwalks. This result can be seen to coincide with the diffusion equation result
hx2i = 2mDt, where m represents the number of spatial dimensions:

numberOfRealizations = 5000;
numberOfTimeSteps = 1000;
sum = 0;

for outerLoop = 1 : numberOfRealizations
position = 0;
for innerLoop = 1 : numberOfTimeSteps

position = position + sign( rand( ) − 0.5 );
end
finalPoint(outerLoop) = position;
sum = sum + position^2;

end

sum / ( numberOfTimeSteps * numberOfRealizations )
hist( finalPoint, 30 );
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24
CONDENSED MATTER PHYSICS

Condensed matter physics relates to solids and liquids with closely spaced, highly
interacting atoms or molecules. The subfield of solid and in particular ordered solid
matter is further termed solid-state physics.

24.1 CRYSTAL STRUCTURE

In contrast to liquids or “supercooled” solids (materials that solidify too rapidly for the
atoms to relocate into energetically favorable ordered locations) for which the atomic
positions are randomly oriented and polycrystalline materials formed from randomly
oriented microscopic crystals, a crystalline substance consists of a single periodic
arrangement of atoms. The atomic positions of a simple cubic lattice occupy the ver-
tices, (x, y, z) = (mx,my,mz)a, of a periodically repeated set of cubes where mx,my,mz

take on all integer values. In a body-centered cubic (bcc) lattice, an additional atom is
situated at the center of each unit cell forming two simple cubic lattices with a relative
displacement of a/2(1, 1, 1). A close-packed structure is formed from a planar layer
with eight atoms arranged in an octagon around every atom. The plane above this
layer is formed from similar octagonal sets of atoms with a relative rotation of π/8
radians where, for a hexagonal close-packed structure, the atoms revert to their loca-
tions in the original layer of atoms, while the atomic positions are instead rotated by
2π/8 = π/4 radians with respect to the first layer in a face-centered cubic (fcc) lattice.
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The latter arrangement viewed from a different perspective forms a cubic lattice
with atoms added to the center of each face of the cube. The diamond structure
contains two fcc lattices with a relative displacement of a/2(1, 1, 1). The resulting
bonds form linked tetrahedrons, which yield an enhanced structural stability.
The smallest periodic rectangular structure in a crystal is termed the unit cell,
while the lengths of its sides are the lattice constants. The smallest crystal volume
that when periodically repeated reproduces, the lattice is instead termed the
primitive cell.

24.2 X-RAY DIFFRACTION

In an ideal crystal structure, numerous families of differently oriented identical scatter-
ing planes can be identified. A planar electromagnetic wave scatters coherently from a

given set of planes if the Bragg condition (cf. Section 19.13) 2d cos θincidence =mλ,

where m is an integer and d is the minimum distance between two successive planes,

is fulfilled. The Bragg condition can also be expressed as k
!
initial−k

!
final = 2πm=dð Þê

A
!,

where A
!
is the surface vector of the planes as taking the dot product of this equation

with ê
A
! and employing the equality of the incoming and reflection angles yields Δk⊥

= 2πm/d where Δk⊥ ≡ 2kinitial cos θincidence is the difference between the components
of the wavevectors of the incoming and outgoing beams perpendicular to the crystal
planes (setting kinital = 2π/λ then reproduces 2d cos θincidence =mλ). Accordingly, light

with λ > 2d cannot be Bragg scattered for any incoming angle. Thus, for diffraction to
occur for a typical atomic spacing of 5 Å, the light wavelength must be less than
10 Å, corresponding to an X-ray photon energy of 1.24 × 103 eV.

As every plane of atoms in the lattice is associated with a diffraction condition, the

values ofΔ k
!
satisfying these Bragg conditions form a second lattice termed the recip-

rocal lattice. Mathematically, for an incoming plane wave Aexp i k
!
initial� r!−ωt

� �� �
,

the amplitude at a distant observation point r! is given by

E =A0 X
all lattice
sites r

!0

ei k
!
initial�r!0 −ωt

� �
ei k

!
final� r

!
−r

!0ð Þ
� �

≡ A0ei k
!
final�r!−ωt

� �ð
s r!0
� �

ei k
!
initial −k

!
final

� �
�r!0

� �
d3r0

ð24.2.1Þ

where the periodic function s r
!� �

is unity at the position of each atom and zero
elsewhere. The scattering amplitude therefore constitutes a Fourier transform of the
particle distribution with respect to the difference between the incoming and outgoing
wavevectors. For a simple rectangular lattice, if a

! is one of the three primitive
vectors defining the primitive cell of the physical (direct) lattice, the scattered fields
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add coherently for reciprocal lattice vectors satisfying Δkiai = 2πmi with i = x, y, z
so that

k
!
mx,my,mz = 2π

mx

ax
,
my

ay
,
mz

az

� �
ð24.2.2Þ

for all sets of integers mi. In general, the components of the primitive vectors of the
reciprocal lattice are given by bi = εijk aj ak/εijk ai aj ak in terms of the primitive vectors
a
! of the direct (physical) lattice.

In X-ray (or equivalently neutron or electron) scattering experiments, a crystal is
typically rotated in a stationary beam. When the orientation of the crystal matches the
Bragg scattering condition, a point is recorded on a photographic emulsion behind the
crystal. Alternatively, the material can be converted into a powder for which a certain
fraction of crystals satisfies each Bragg reflection condition. The Bragg angles are
then recorded as rings. The diffraction pattern of extended objects such as molecular
crystals again describes a set of dots corresponding to the angles of the reciprocal
lattice vectors. However, the amplitude of each dot is proportional to that of the
diffraction pattern of a single molecule at the corresponding angle. As well, for certain
crystal structures, points in the diffraction pattern may be missing if the fields gener-
ated by certain planes of atoms internal to the unit cell interfere destructively with
those of the remaining planes of atoms with the same orientation.

24.3 THERMAL PROPERTIES

According to kinetic theory, the thermal conductivity of a gas resulting from energy
transfer through molecular motion equals κ = nλ�vcspecific=3 = λ�vC=3 where cspecific and
C are the specific heat per molecule and per unit volume and λ is the mean free path. In
a solid, energy is instead transferred through molecular vibrations. However, linear
superpositions of vibrations termed phonons behave as localized quasiparticles.
The corresponding thermal conductivity of a solid is κ = λ�vCphonon=3, where Cphonon

is the specific heat per unit volume of phonons. Long-wavelength acoustic phonons
and short-wavelength optical phonons dominate at low and high temperatures, respec-
tively, yielding a T3 (cf. Section 23.7) and a constant temperature dependence in the
two cases. The total phonon mean free path is given by

1
λtotal

=
XN
m= 1

1
λm

ð24.3.1Þ

where λm denotes the mean free path associated with the mth collision channel (e.g.,
the mth physical process that induces collisions) in isolation, since the number of
collisions per unit time is the sum of those associated with each channel, each of which
is in turn proportional to the inverse of its corresponding mean free path. Phonon
scattering in a crystal occurs at point defects such as impurities or isotopes, crystal
boundaries, and extended defects such as dislocations. Phonons can also interact
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through nonlinear interactions in which anharmonic terms in the atomic restoring
force result in 1 or more than 2 phonons emerging from a two-phonon collision.
Finally, phonons can be Bragg reflected by successive lattice planes. Typically, metals
and near-perfect crystals such as diamond exhibit high thermal conductivities, while
the disorder inherent in glasses and plastics yield small phonon mean free paths and
therefore low thermal conductivities.

24.4 ELECTRON THEORY OF METALS

Since the electron wavefunctions of conduction electrons in different atoms in a metal
overlap, the eigenfunctions extend throughout the lattice. In this manner, a metal
resembles a single atom with a delocalized nuclear volume in which the electrons
occupy all energy levels up to that of the highest filled state at the Fermi energy,
EF. The electronic wavefunction then resembles a sinusoidal wave confined to the
crystal volume. Since sinusoidal functions are composed of equal amplitude,
oppositely directed traveling waves, electrons are effectively distributed among all
traveling waves with energies below EF.

An electric field within an imperfect conductor accelerates its electrons with a force

qE
!
= −e E

!
. However, as the velocity of an electron increases, its de Broglie wave-

length contracts enhancing its scattering from lattice vibrations and imperfections.
After an average distance termed the mean free path, these interactions effectively
randomize the ensemble-averaged electron velocity, returning it to zero. The effective
net average velocity that the electrons experience between randomizing scattering
events is thus Δv≈ FΔt/m = − eEτ/m, where τ is the mean time between these events.
As the current density corresponds to the charge per unit time passing through a
surface of unit, cross-sectional area is oriented perpendicularly to the direction of
the charge flow J = nqΔv = e2Enτ/m = σE, yielding a conductivity σ = e2nτ/m. At
low temperatures scattering from impurities and other localized defects and at high
temperatures scattering from thermal lattice vibrations (phonons) dominate the free
path. Empirically, the resistivity increases from a value that varies with sample purity
first as � T5 and then as T as T is raised from 0K.

In a conductor as in an atom, only electrons in the highest energy states normally
contribute to electron transport. That is, while all electrons experience an electric
force, lower-energy electrons with positive momentum are paired with reflected
electrons with equal negative momentum, forming a standing wave with zero net
transport. Therefore, only unpaired high-energy electrons with E≈ EF are scattered
with a scattering time approximated by the scattering length divided by the velocity
of electrons at the Fermi surface

σ =
ne2lfree
mvFermi

ð24.4.1Þ

where for copperσ ≈ 5 × 107(Ωm)− 1, vFermi =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEF

p
≈106m=s, and n≈ 7 × 1028 m− 3,

yielding lfree≈ 2.5 × 10− 8 m or ≈ 50 atomic radii.
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24.5 SUPERCONDUCTORS

The resistivity of certain materials vanishes below a critical temperature, Tcritical, that
does not vary with impurity concentration (although the extent of the temperature
interval over which the resistivity drops to zero increases with the impurity density).
This superconducting behavior results from a long-range attractive force between
electrons mediated by phonons. Thus, Tcritical is generally higher in poorly conducting
metals with strong phonon coupling than in good conductors, while the Tcritical of
isotopes varies as the inverse square root of the atomic mass, replicating theffiffiffiffiffiffiffiffiffi
k=m

p
dependence of the phonon frequency. Effectively, an electron with momentum

k
!
and a certain spin propagating through the lattice alters the electron distribution of

neighboring atoms, leading to an attractive potential for a second electron with

momentum − k
!
and opposite spin. As a result, Cooper pairs form at a critical temper-

ature Tcritical and increase in density for T < Tcritical.

Some features of superconductors include the following:

1. Normal resistivity can be restored at T = 0 by applying a magnetic field greater
than a specimen-dependent critical value Bcritical,T = 0. For 0 < T < Tcritical, the
critical magnetic field is

Bcritical =Bcritical,T = 0 1−
T

Tcritical

� �
2

� �
ð24.5.1Þ

Since current flowing through a superconductor generates a magnetic field, a
superconducting sample becomes resistive at sufficiently large current densities.

2. Applying a magnetic field to a superconductor generates a persistent current
opposing the magnetic field change, resulting in a zero internal magnetic field,
which is termed the Meissner effect.

3. Superconductors can be type I or type II. Type I superconductors, which include
almost all elements, transition directly from the normal to the superconducting
state at Bcritical. In type II superconductors, which comprise most alloys as well
as Nb, Tc, and V, a mixed state forms above a lower critical field for which
magnetic flux cylinders or flux quanta form microscopic filaments through nor-
mally conducting material. The entire sample only conducts normally above the
upper critical field. If an electric field is applied to a type II superconductor
between the two critical fields, the filament motion experiences an effective vis-
cosity that dissipates energy resulting in a nonzero resistance. This can be coun-
teracted through flux pinning by intentionally added defects that prevent
filament migration.

4. The Gibbs free energy of a superconductor is continuous in a superconducting
transition, but the specific heat, T∂S/∂T, is discontinuous, which is termed a
second-order phase transition.
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5. Heat is only transferred in a superconductor by normal, nonpaired electrons
so that the thermal conductivity decreases rapidly below the critical
temperature.

6. While the resistance of a superconductor is zero for DC currents, the fluctuating
field of an AC current dissipates energy through the motion of the normal
electrons, yielding optical absorption at all T.

24.6 SEMICONDUCTORS

The chemical bonding energies of valence electrons while negligibly small in alkali
elements and metals on the bottom and left of the periodic table increase to several eV
for atoms at the upper right-hand side. Since this range far exceeds the mean thermal
fluctuation energy of kT≈ 1/40 eV at T = 300 K, the conductivities of insulators and
conductors differ by� 25 orders of magnitude (more for ideal samples). The centrally
located elemental semiconducting group IV elements, Si and Ge, possess intermediate
binding energies. As well, in compound semiconductors, formed from alloys of
group III and V elements or group II and VI elements, neighboring atomic electronic
wavefunctions overlap, and hence, the electrons experience the average potential of
the component atoms, yielding binding energies approximating that of the group IV
elements. The intermediate binding strengths enable the modulation of the properties
of such semiconductors by adding conducting or insulating impurities or applying,
e.g., electrical, optical, or thermal forces. Consequently, mechanical switches can
be replaced by rapid electrical or optical switches.

The atoms in a crystal bond chemically, possibly leading to different sequences of
energy levels than those of the isolated atoms. Each modified energy level further
broadens into an energy band. To illustrate, consider a one-dimensional crystal of
N coupled atoms spaced a distance a apart along a line segment of length L =Na.
The envelope of the eigenmode of an electron confined within the crystal must vanish
at x = 0, L and therefore varies as sin(mπx/L) for some integer m < N. The sin(mπx/L)
envelope is composed of a sum of equal amplitude forward- and backward-traveling
waves such that the phase of each wave differs by Δϕ = ± πm/N with m = 1, 2,…,N
between adjacent atomic sites. Alternatively, artificial periodic boundary conditions
can be introduced (corresponding to bending the line segment into a circle) in which
case the eigenfunctions correspond to traveling waves with independent amplitudes
and phase differences of Δϕ = 2πm/N with m = −N/2 + 1,…,N/2 − 1, N/2 between
adjacent sites, yielding the same total number of modes as for zero boundary condi-
tions. In either representation, the energy of each eigenfunction can be plotted as a
function of the phase change Δϕ written as the “lattice” momentum p through Δϕ = π
m/N = kΔx = ka with p = ℏk, yielding an energy band diagram. For electrons that are
strongly bound to their host atoms, the energy is nearly independent of Δϕ and hence
p. The ratio of applied force to acceleration or effective mass, m∗ =F/a, which is given
in analogy to the free electron mass by the reciprocal of the band curvature according
to, 1/m∗ = ∂2E/∂p2 (from E = p2/2m∗), is then large as expected.
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In a metal, nearly degenerate or degenerate filled and empty levels bond or overlap
to form a partly filled energy band. In contrast, as the electron level separations are
larger in semiconductors and insulators, after bonding an energy difference Eg termed
the energy or bandgap exists between the highest of the completely filled (at T = 0)
valence bands and the lowest energy level of the first unfilled conduction band.
Hence, unlike a metal, applying a (moderate, nonionizing) electric field to a semicon-
ductor or insulator at T = 0 does not produce a current. Rather, since all bound states
are filled, electrons propagate equally in all directions both in the presence and
absence of an external field. For T > 0, however, a bound electron near the top of
the valence band can acquire an energy larger than Eg as a result of an interaction with
a low-probability high-energy thermal lattice vibration, internally ionizing the elec-
tron from a valence to a conduction band state. An applied electric field accelerates
the unpaired conduction band electron while displacing an electron from a neighbor-
ing atom into the unoccupied state of the ionized host atom. The latter current can be
modeled as that of a positively charged vacancy or hole.

As the thermal generation of free electrons is characterized by a transition energy
≈ Eg, its transition rate varies as Βthermal exp(−Eg/kT) in analogy with chemical
reaction rates. The number of recombination events per second per unit volume of
the conduction band electrons with ionized atoms is then given by a “bimolecular”
rate Βbimolecularnpwhere n and p, which coincide for an intrinsic (pure) semiconductor,
denote the density of electrons and holes per unit volume. That is, since the density of
the background atoms far exceeds n and p, doubling both n and p yields four times as
many collision events between the electrons and holes. Equating the recombination
and generation rates yields with n = p

n≈ Βthermal=Βbimolecularð Þexp −Eg=2kT
� � ð24.6.1Þ

While for room-temperature semiconductors Eg is on the order of an eV, in insulators,
the energy gap is typically several eV, effectively suppressing the thermally induced
free carrier density and hence the conductivity.

Since electrons possess a moderate ionization energy in semiconductors, the finite
temperature conduction band electron density is greatly enhanced in extrinsic
(impure) semiconductors through the addition of impurities. Donor atoms from the
fifth column of the periodic table exhibit small (� kT) internal ionization energies
when present in, e.g., group IV semiconductors such as Si or Ge. In particular, in a
diamond (fcc) lattice of group IV atoms, four of the group V donor atom’s valence
electrons bond with the four neighboring atoms, while the fifth electron propagates
in the potential of its host nucleus screened by the four bonded electrons. As these
are easily polarized, the effective dielectric constant is large, reducing the effective
atomic potential (which varies as the inverse of the dielectric constant). Hence,
the fifth donor electron is only weakly bound to its host nucleus and hence is easily
ionized by thermal fluctuations. Consequently, a large fraction of donor atoms are
ionized at room temperature, leading to excess mobile free electrons accompanied
by positive ions with fixed lattice locations. The conductivity of such an extrinsic
n-type semiconductor far exceeds than that of the intrinsic semiconductor. Similarly,
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group III acceptor impurities form p-type extrinsic semiconductors as they readily
capture electrons from neighboring atoms, forming four bonds with the neighboring
group IV atoms. This leads to negatively ionized fixed acceptor sites together with
mobile vacancies termed holes with the effective properties of positively charged
particles.

That current is almost exclusively carried by the migration of negative carriers in
n-type semiconductors and by positively charged holes in p-type materials enables a
p–n junction diode formed by placing two samples of p- and n-type materials in
contact to constrain or rectify electric current to flow in a single direction. That is,
a positive voltage applied to a contact to the p section relative to an n contact produces
an electric field from the p to the n contacts. Holes in the p-type material and electrons
in the n-type material then both propagate toward the junction between the two
materials where they recombine generating a current. Negatively biasing the p region
relative to the n region reverses the electric field and therefore the direction of carrier
motion, inhibiting recombination.

Free carriers can also be created directly by external forces as in the field-effect
transistor (FET), which implements a voltage-controlled switch. In this device, the
semiconductor conductivity varies between high and low values in response to an
external electrical field in the same manner as a large electric field in a fluorescent
light bulb ionizes a dilute gas of neutral mercury atoms, creating a conducting channel
between two spatially separated contacts. To attain the required high Si ionization
field � 105 V/cm, a thin � 1 μm insulating SiO2 glass layer is grown on a Si
substrate by exposure to oxygen at high T and a metal contact deposited over the glass.
Patterning the layers results in a narrow capacitor plate over a segment of intrinsic
Si separating two highly doped and therefore conducting source and drain regions
(the source voltage is negative in normal operation relative to the drain forming a
source of electrons). Applying a potential of a few volts to the metal contact yields
an electric field E = −ΔV/Δx that ionizes the Si atoms directly under the glass plate.
This forms a conducting channel between the source and drain. Once the applied
voltage is removed, the free electrons recombine with the ionized atoms. The
source–drain current is then eliminated, turning off the switch.
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25
LABORATORY METHODS

25.1 INTERACTION OF PARTICLES WITH MATTER

When an energetic particle beam passes through matter, its energy and orientation is
degraded. If the particles undergo single, destructive collisions, the beam preserves its
angular distribution, but the number of particles decays according to N(x) =N(x = 0)
exp(−μx), where μ is termed the absorption coefficient and 1/μ the mean free path. If
multiple collisions occur, the angular spread of the beam increases with distance. Its
mean range, R0, is defined as the distance at which half of the incoming particles dis-
sipate their excess energy. The energy loss of a beam is quantified by the derivative
dE/d(ρx), where E is the particle energy and ρ the medium density. This quantity var-
ies as the square of the product of the particle charge with the mean atomic number of
the absorbing material.

At low energies, electrons or heavy particles passing through matter collide with
electrons and dE/d(ρx)/ 1/v2 except at velocities sufficiently small that the incoming
particle velocity is comparable to that of the atomic electrons. On the other hand, for
energies higher than about 1 GeV, termed the ionization minimum, the derivative
increases slowly with energy. At the minimum, dE/d(ρx) is approximately a few
MeV/g-cm2 for all materials although electrons undergo frequent high-angle scatter-
ing processes unlike heavy charged particles. Electron beams with energies larger than
a critical energy of ≈ 600 MeV/Ztarget, where Ztarget is the charge number of the atoms
in the target material, generate bremsstrahlung photons through heavy nuclei scatter-
ing. The resulting energy loss scales as 1/m4 where m is the incoming particle mass
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and is therefore far more significant for electrons. The density of photons of a given
energy is proportional to 1/Eγ up to energies that approximate that of the incoming
electron. Energetic electrons produce high-energy photons that subsequently produce
further electron–positron pairs, inducing electron showers.

For light beams at low energies, photons are principally absorbed through the
photoelectric effect in which interactions with atomic electrons generate free electrons
with an energy E = Eγ − Ebound, where Ebound represents the electron binding energy.
Compton scattering of photons from electrons becomes significant at intermediate
energies, while for Eγ > 2mec

2, electron–positron pairs are generated, becoming the
dominant decay channel at high energies. The total absorption coefficient is obtained
by summing the coefficients of all three processes.

25.2 RADIATION DETECTION AND COUNTING STATISTICS

Particles and particle trajectories are typically detected from their scattering or
collisions in a background medium. If only the number of particles is of interest, then
scintillation counters record photons produced by energetic charged particles in a
transparent dielectric medium. For incoming gamma rays, these are typically high-
energy secondary electrons created by electron–positron pair production, Compton
scattering, or the photoeffect. In avalanche photomultiplier tubes, a fraction of this
light is converted to photoelectrons at a photocathode. These are accelerated by an
electric field onto a second metal dynode plate that produces additional secondary
electrons from each collision. Subsequent stages yield a large amplitude output pulse
with a height that is related to the energy initially transferred by the incoming particle
to the photomultiplier. However, since the Compton effect produces electrons with a
wide range of energies, low-amplitude pulses can be generated even by energetic
incoming particles.

In an ionization chamber, a gas is placed in a high electric field between two capac-
itor plates. A particle that ionizes a gas molecule generates an electron and a positively
charged ion that move in opposite directions, forming a current pulse when they arrive
at the plates. Replacing the gas by a reverse-biased semiconductor p–n junction results
in a semiconductor detector. Ionizing an atom in the junction region produces an
electron and hole that propagate in opposite directions, creating an electric pulse. In
a semiconductor avalanche detector, the field within the junction is sufficiently large
that the accelerating electron and hole generate secondary electron–hole pairs. Large
semiconductor detectors are however difficult to fabricate. Further, the probability,
P nð Þ = e−�n�nn=n!, of initially generating a pulse with n electrons is Poisson distributed
with standard deviation

ffiffiffi
�n

p
. For small average numbers, �n, statistical fluctuations in

pulse heights degrade the energy resolution of the measurement. With lithographic
(photographic patterning) techniques, semiconductor detectors can be constructed
that provide micron resolution, enabling the detection of very short-lived particles.

The actual particle trajectory can be observed in bubble chambers constructed of
nearly boiling liquid in contact with a piston. Just before the passage of a stream of
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particles, the pressure is suddenly decreased, lowering the boiling point and causing
the formation of bubble tracks in the resulting superheated liquid along the charged
particle paths. A few milliseconds after the tracks are recorded, the piston is brought
back to its original position. Normally, a high magnetic field is also present so that the
charged particle energies can be deduced from the curvature of their paths.

While bubble chambers cannot be activated upon detection of specific events,
spark chambers are surrounded by detectors such as scintillation counters that identify
events such as a single particle entering the chamber and a certain number of particles
leaving the chamber. When an event is detected by the outside counters, a voltage
close to the breakdown voltage of the gas in the chamber is applied across
alternating sets of metal plates, producing sparks at the locations where the particles
previously ionized the gas. The location of these events can be recorded automatically
by, e.g., replacing the plates with a wire mesh in which the electric signals are
registered by ferrite cores at the wire intersections.

Calorimetersmeasure the energy of particles deposited in an absorbing material by
monitoring its temperature. Particularly sensitive devices employ, e.g., the transition
between superconducting and normal resistance induced by slight temperature
changes.

25.3 LASERS

An excited carrier can decay through spontaneous emission that is unaffected by the
presence of any background electromagnetic field and stimulated emission that is
induced through field interactions. Simulated radiation retains the phase of the
inducing field, resulting in long-range correlations of decay events, while spontaneous
emission processes necessarily occur with random relative phase shifts.

Since stimulated emission results from an electron–photon interaction, its rate
varies as the product of the photon density (or equivalently the electromagnetic energy
since the energy is proportional to the number of photons through E = ℏω) and the
electron density. In a system with two energy levels in the presence of a photon
density ργ(ℏω), the absorption and emission rates must coincide in equilibrium.
Denoting byN1 andN2 the number of electrons in the ground and excited state, respec-
tively, and the Einstein rate coefficients for absorption, spontaneous, and stimulated
emission by A1!2, T2!1, and S2!1, then, if the energy level difference equals ℏω21,

A1!2ργ ℏω21ð ÞN1 =T2!1N2 + S2!1ργ ℏω21ð ÞN2 ð25.3.1Þ

Since ργ(E) and the ratio of occupation factors N2/N1 at thermal equilibrium are both
known, the ratios of the various coefficients follows from Equation (25.3.1). For
stimulated emission to surpass absorption and spontaneous emission, the density of
electrons in the upper state, N2, must exceed that of the density in the lower state
N1, which is termed population inversion. In a two-level system, however, as
a result of spontaneous emission, the absorption rate is always greater than the
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simulated emission rate, as the number of transitions generated by absorption must
equal the number of decays through both emission processes combined. Accordingly,
one or more additional states are required at energies higher than E2 that decay
into state 2 more rapidly than the rate of spontaneous emission of state 2 into state 1.
Exciting the electrons in state 1 into these higher levels can then result in population
inversion such that an electromagnetic beam with frequency ω12 = (E2 − E1)/ℏ
experiences net amplification. If the medium is placed between two parallel mirrors,
a high-power directed beam is created at the frequency of greatest amplification.

While atomic lasers require an atomic system with three or more levels, in a
heterojunction semiconductor diode laser, electrons and holes are instead injected
from forward-biased p and n regions into a weakly doped or undoped high-index
active region with a smaller bandgap. The carriers rapidly lose energy through lattice
collisions until the free electrons and vacancies accumulate in low momentum states
in the conduction and valence bands. The resulting population inversion enables
lasing at photon energies slightly above the bandgap energy. The stimulated light
is further confined by total internal reflection along the active region creating a
directional beam.
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absorption coefficient, 430
acceleration, 171, 185
angular, 185

acceptor, 429
accuracy, 92
acoustic waveguide, 313
action, 177
active region, 433
adiabatic, 402
phase, 352
theorem, 351

adjoint, 34
Airy equation, 340
alpha particles, 354
alpha ray, 381
alternating current, 269
Amperes, 229
Ampere’s law, 229, 231, 254
Amperian loop, 257
analytic, 95
continuation, 101

angle, 18–20, 31, 73
bisector, 19
central, 20

corresponding, 18
exterior, 18
inscribed, 20
interior, 18
solid, 31
spherical, 73

angstrom, 194, 355
conservation of, 194

angular momentum, 151, 198, 357
operator for, 151, 357
relative, 198

antenna, 290, 293
electric dipole, 293

antiparticle, 381, 384
aperture, 312

radiation pattern of, 312
area, 31, 41, 69–70

element, 231
of shell surface, 70
of surface, 69
of triangle, 41

associative, 32, 328
astronomical units, 193
atmosphere, 211
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atomic number, 379
atomic units, 357
atomic weight, 379
avalanche photomultiplier, 431
axis, 29
principal, 29

Babinet’s principle, 296, 312
band diagram, 427
bandgap, 428
bar, 211
baryons, 384, 319–1
incoherent, 321
of particles, 319, 320

becqurel, 382
Bernoulli’s equation, 214
Bessel functions, 158, 159, 162
recursion relations for, 159
spherical, 162

Bessel’s equation, 157
beta-decay, 381
beta ray, 381
binding energy, 356, 380
nuclear, 380

binomial coefficients, 17, 88
binomial theorem, 17
Biot-Savart, 257
black body radiation, 401
Bohr, 356
magneton, 362, 381
model, 355, 356
radius, 357

Boltzmann condition, 389
Boltzmann constant, 388, 427
boost, 220
Born approximation, 377
Bose-Einstein condensation, 417
Bose-Einstein statistics, 391–2
bosons, 353, 383
model, 383
periodic, 125, 332

boundary conditions, 122, 123, 125, 244, 245,
284, 302, 309 332, 326, 330

Dirichlet, 122, 245, 302
electromagnetic, 244
Hermitian, 330
mixed, 123
Neumann, 123, 245, 302
periodic, 123, 125, 302, 332

Bragg condition, 423
Bragg reflection, 304
branch cuts, 101
Bremsstrahlung, 280, 430
Brewster angle, 310
bubble chamber, 431
bulk modulus, 282

calculus, 50, 55, 72, 168
fundamental theorem of, 55
of variations, 168
vector, 72

calorie, 401
Calorimeter, 432
canonical transformation, 207
capacitance, 230, 271, 273
carrier, 295–6
frequency, 295
wavevector, 296

Cauchy-Riemann relations, 95
Cauchy’s theorem, 98
Cayley-Hamilton theorem, 47
central limit theorem, 87
centrifugal acceleration, 186
centroid, 19
Cerenkov radiation, 303
chain reaction, 383
chain rule, 63, 71
multidimensional, 63

characteristic equation, 46–7
charge, 228, 230, 233, 242, 247
bound, 242
conservation, 232
continuity equation, 232
density, 228
image, 247
magnetic, 230
point, line, planar, 233

charm, 384
chromatic distortion, 300
circle, 29
circulation, 80, 228
circumcenter, 19
Clausius-Clapeyron equation, 413
Clebsch-Gordan coefficients, 360
close packed, 422
closure, 335
cofactors, 37
coherence, 289
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coil, 258
collision, 197, 431
combination, 88, 358
of angular momentum, 358

commutative, 33, 328
commutator, 33, 328, 357
of angular momentum, 357

completeness, 125
complete set, 47
complex, 23
compressibility, 405
adiabatic, 405
isothermal, 405

Compton scattering, 431
computational grid, 326
condition number, 49
conditions, 109
boundary, 109
boundary, 109
initial, 109

conduction band, 428
conductivity, 230, 239, 420, 424–5, 427
of superconductor, 427
thermal, 420, 424

conductor, 96, 427
conic section, 28–9, 191
conjugate, 24
conservation, 225, 357
of angular momentum, 357
of relativistic energy-momentum, 225

conservation laws, 384
elementary particle, 384

conservation rule, 384
constraints, 83
continuity equation, 211, 323
contraction, 220
contravariant, 76, 219
convergence, 60
radius of, 60

convolution, 130, 426
coordinates, 72, 73, 177, 207
Cartesian, 73
cylindrical, 73
generalized, 177
ignorable, 207
orthogonal and non-orthogonal, 72

coordinate system, 40, 188
right-handed, 40

Coriolis acceleration, 186
correlation, 386

time, 386
correspondence principle, 328
cosine, 29

direction, 29
Coulomb, 228
Coulomb barrier, 380
covariance, 87, 76, 219
Cramer’s rule, 38
critical angle, 298
critical mass, 383
critical points, 54, 412
cross product, 40
cross section, 198, 312, 375–6, 419

absorption, 312
elastic and inelastic, 376
scattering, 375

crystal, 422
curie, 382
curl, 77, 80
current, 229, 238, 323, 426, 229, 238

density, 238, 425
flux of, 229, 238
particle, 323
persistent, 426
surface, 229

curvature, 54, 78
in multiple dimensions, 78

cyclic, 409
cyclotron frequency, 258, 363

data, 91
least squares fit to, 91

deBroglie wavelength, 318
decay constant and rate, 382
delta function, 33, 128–30

derivatives of, 129
eigenfunction representation, 130
Kronicker, 33
properties of, 129
units of, 129

density, 323
particle, 323

density of states, 350, 377, 397
relativistic, 377

derivative, 51–2, 54, 62, 77, 95–6, 173, 211,
219, 338
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chain rule, 51, 96
of complex function, 95
convective, 211
directional, 77, 219
logarithmic, 338
mixed partial, 62
operator, finite difference approximation

to, 173
partial, 62
product rule, 51, 96
of quotient, 52
second, 54

derived variables, 412
detector, 431
avalanche, 431
semiconductor, 431

determinant, 36
deuterium, 379
diamond structure, 423
dielectric, 313
constant, 286
permittivity, 230
waveguide, 313

difference, 51
central, 51
forward, 51

differential equations, 108–9, 111–12,
115, 138

homogeneous, 109, 112, 109, 115
linear, 108
order and degree, 108
partial, 138
particular solution, 115
separable, 112
system of, 111

diffraction, 291, 318
of particles, 318
resolution of, 291

diffusion, 419
coefficient, 420
equation, 141, 420

dimension, 5
analysis, 5

diode, 429
dipole, 228, 241, 248, 259, 372–4
approximation, 372
electric, 241, 248
magnetic, 259, 374, 241

moment, 319
transition selection rule, 373

dispersion, 296, 300, 307
material, 300
normal and anomalous, 307
parameter, 296

displacement, 38, 171
distance, 38
distribution, 87–8, 90, 128
binomial, 88
Gaussian or normal, 87
Poisson, 90
probability, multivariate, 87

divergence, 77–8, 173
numerical, 173

donor, 428
Doppler Effect, 223
relativistic, 223

drift velocity, 239
Dulong and Petit, 399, 401
law of, 399, 401

dynes, 171, 174

earth mass, radius, 172
earth–sun distance, 193
eccentricity, 192
efficiency, 409, 409
eigenfunction, 46, 122, 125, 330–331
complete set of, 125
degenerate, 331
orthogonal, 125, 330
orthonormal, 46, 330

eigenmode, 319
eigenstate, 337, 370
bound, 337
vibrational and rotational, 370

eigenvalue, 45–6, 123
of Hermitian matrix, 46
spectrum, 123

eigenvector, 45–6
degenerate, 46, 384

Einstein rate coefficients, 432
Einstein temperature, 32, 400
notation, 32

electret, 243
electric displacement, 228
electric field, 229, 236, 236
electrodynamics, 227
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electromagnetic field tensor, 249
electromagnetic shielding, 234
electromagnetism, 227
electron radius (classical), 280
electron-volt, 235
electrostatics, 227
electroweak theory, 383
ellipse, 30
major and minor axis, 30

emf, 262
emission, 432
spontaneous and stimulated, 432

endothermic, 382
energy, 174–5, 194, 224, 241, 267, 287, 344,

380, 382, 401, 427–8
binding of nucleon, 380, 344
electromagnetic density, 287, 287
gap, 428, 401
kinetic, 174, 194
momentum four vector, 224, 427
potential, 175
potential of electric dipole, 241
reaction, 382, 224
rest, 224
stored in capacitor, inductor, 267

engine, 409
Carnot, 409

ensemble, 386–90, 396
canonical, 387, 389
grand canonical, 387, 390
microcanonical, 386, 388, 396
statistical, 386

enthalpy, 404, 408
entropy, 387, 395, 398, 401, 403
equation, 13–14, 28, 34
linear, 13, 28
matrix, 34
of perpendicular line, 28
redundant, 14

equilibrium, 195, 401, 414
mechanical, 195
thermal, 401

equipartition theorem, 399
erg, 174
error, 91–2
mean squared, 91, 92
root-mean-squared, 92
systematic and random, 92

Euler angles, 204
Euler’s equation, 203, 213

Euler’s method, 110
exchange interaction, 369
exothermic, 382, 405
expansion, 408, 408

Joule-Thomson, 408
expectation value, 328
extensive, 398, 404
extremum, 168

of integrals, 168
eyepiece, 301

factorial, 56
factoring, 14–15
Faraday’s law, 230, 233, 244, 262–3
Faraday’s law of induction, 230
Farads, 230
Fermi, 380
energy, 415, 425
exclusion principle, 368
function, 415
gas, 415
liquid, 380
temperature, 415

Fermi momentum, 380, 384
of neutron, 380

Fermi-Dirac distribution, 415
Fermi-Dirac statistics, 391, 393
fermions, 353, 384
Fermi’s golden rule, 351, 377
fields, 72, 189, 228, 229

force, 229
gravitational, 189
scalar, 72
source, 228
vector, 72

fine structure constant, 355
finite difference method, 326
fission, 383
fixed point, 110
flow, 211, 214

potential, 214
tube of, 211

fluctuation, 410
of statistical mechanical system, 410

fluid, 213–14
flow, 210
incompressible, 214
Newtonian, 213

flux, 198, 211, 262, 264–5, 418–19, 426
of electromagnetic energy, 418

438 INDEX



magnetic, 262, 264–5
of mass, 211
particle, 198, 418
pinning, 426
quanta, 426

focal length, 300
focal points, 30
focus, 29
force, 172–4, 177, 206, 213, 224, 228,

241, 258, 262, 398, 402
centrifugal, 258
conservative, 174
on electric dipole, 241
electromotive, 262
field, 228
four-vector, 224, 206, 398, 402
linear restoring, 173
magnetic, 258
nonconservative, 177
normal, 172
shear, 213

forward difference, 110
Fourier series, 122–3, 125–6
Fourier transform, 122–3, 127, 423
Fraunhofer diffraction, 311–12
free path, 419, 430
frequency, 285, 368
cyclotron, 368
linear, 285

Fresnel approximation, 311
friction, 172, 238
static and dynamic, 172

Friedholm equations, 166
Frobenius, 147
method of, 118, 147

full width at half maximum, 183
functions, 21, 24, 25, 94
complex, 94
even, 22
exponential, 21
harmonic, 24
hyperbolic, 22
inverse hyperbolic, 25
inverse trigonometric, 25
inverse, 21
odd, 21, 22

fusion, 383

gamma function, 56
gamma rays, 381, 431

gauge, 251–2, 371
Coloumb, 252, 371
function, 251
Lorenz, 252
transformation, 251, 367

Gaussian, 296
distribution, 93
pulse, 296
surface, 231
wavepacket, 324

Gauss’s law, 82, 228, 231, 233, 254
generating function, 147, 158, 207
of Bessel functions, 147, 158

generator, 44, 93, 264, 44
random number, 93

geometry, 17, 28
analytic, 28

g-factor, 362
Gibbs free energy, 404–5
Gibbs phenomena, 127
gluon, 383
gradient, 77, 46
gravitational acceleration, 172
gravitational constant, 172, 193
gravitational force, 171
graviton, 383
Green’s function, 131, 144, 244,

274, 312
for scalar wave equation, 312, 274

Green’s second identity, 83
Green’s theorem, 312
group, 43
group velocity, 316, 325
gyromagnetic ratio, 362

hadrons, 384
half-life, 382
Hamilton-Jacobi equation, 208
Hamiltonian, 206, 367
in electromagnetic field, 367

Hamilton’s equations, 206
Hamilton’s principal function, 208
Hankel functions, 164, 181
spherical, 164

harmonic oscillator, 342
eigenfunctions of, 342

harmonic oscillator, 356–7
heat, 402
heat bath, 409
heat pump, 409
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heat reservoir, 389
heat transfer, 419
Heaviside step function, 103, 323
Heisenberg representation, 344
Heisenberg uncertainty principle, 296
helium, 368
Hellman-Feynman theorem, 347
Helmholtz equation, 134, 311
Green's function of, 134

Helmholtz free energy, 403
Helmholtz product, 39
Henrys, 230
Hermitian, 34, 45, 330
condition, 330
conjugate, 330
conjugate or transpose, 34
skew, 45

Hertz, 285
histogram, 93, 421
holes, 428, 429
holonomic, 177
Hund’s rule, 369
Huygens’ principle, 291
hydrogen, 370
ion, 370

hydrogenic atoms, 360
hyperbola, 30
hyperfine structure, 364

ideal gas constant, 398
ideal gas law, 398
identities, 26, 26
images, 246, 300
method of, 246
virtual, 300

impact parameter, 198
impedance, 230, 269, 286, 301,

307–8, 324, 338
of conducting layer, 308
free space, 286

impulse, 181
impulse approximation, 199
incenter, 19
incidence, 298, 309
angle of, 298, 309
plane of, 309

inclined plane, 172
indistinguishable particles, 396
classical partition function for, 396

inductance, 230, 265, 273
self and mutual, 265

inequality, 15
inertia, 170, 172, 199

moment of, 199
information, 387
initial conditions, 284, 326
insulator, 427
integral, 54–5, 67, 70, 98, 103, 168

complex contour, 98
definite, 54
definite and indefinite, 55
double, 67
equation, 166
path, 168
principal part, 103
surface, 70

integrand, 55
integrating factor, 113
integration, 55–6, 58–9, 67,

105, 110
midpoint rule, 55
numerical, 110
order of, 67
partial, 56
by partial fractions, 59
principal part, 105
rectangular rule, 55
by substitution, 58

intensity, 287
intensive, 398, 404
interaction, 383

strong, weak,
electromagnetic, 383, 28

interference, 289, 295, 321, 376
of radiation patterns, 295
in scattering, 376
of wavefunctions, 321

internal variables, 358
intersection, 28

of two lines, 28
interval, 222

space or time-like, 222
inverse, 12

function, 52
problems, algebraic, 12

ionization chamber, 431, 430
irreversible, 408
isotope, 379, 381
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isotropic media, 227
iteration, 167

Jacobi identity, 33
Jacobian, 71, 73
Jones polarization vector, 288
Joules, 174

Kepler’s laws, 191
kernel, 167
of integral equation, 167

kilograms, 172
kinetic energy, 198
internal, 198

Kirchoff’s laws, 266

ladder, 201
adder problem, 195
ladder relation, 163
of spherical bessel functions, 163

Lagrange multiplier, 83, 177, 201
Lagrangian, 177, 224, 224
Lamb shift, 364
Laplace equation, 96, 139, 145
numerical solution of, 139
in spherical coordinates, 145

Laplace transform, 135
Laplacian, 77–8
Larmor’s formula, 278, 293
latent heat, 412
lattice, 422–4
constant, 423
direct, 423
reciprocal, 424

Laurent series, 100
law of mass action, 414
Legendre polynomials, 146, 153
associated, 153

Legendre’s equation, 124
Legendre transform, 396
Legendre transformation, 206, 403
lens, 299–300
objective, 300

Lenz’s law, 262, 383
lever arm, 187
Levi-Citvia symbol, 36
Levi-Citvia tensor, 40
L’Hopital’s rule, 54
Lienard-Wiechert potentials, 276

light cone, 222
limit, 50, 94, 94
line, 28–9
equation of, 28
parametric description of, 29

linear, 47
superposition, 47

liquid drop model, 383
logarithm, 22
to a base, 22
natural, 22

Lorentz contraction, 217
Lorentzian line shape, 183

magic numbers, 380
magnetic field, 229
magnetic induction, 229
magnetic moment, 362
magnetic permeability, 231
magnetic resonance imaging, 381
magnetic susceptibility, 416
magnetization, 416
magneton, 381
nuclear, 381

magnetostatics, 227, 256
magnification, 300
magnitude, 38
mass, 170, 194, 197–8, 379, 427, 197
center of, 194
effective, 427
number, 379
reduced, 198

MATLAB®, 6
matrix, 32–5, 38, 42–3, 47–8, 34
diagonalization, 48
identity, 33, 47
inverse, 38
multiplication, 32
orthogonal, 43
rank, 35
rotation, 42
similar, 48
skew-symmetric, 33
symmetric, 33
trace, 35
unitary, 43

maximum, 54, 67
in multiple dimensions, 67

Maxwell distribution, 417
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Maxwell force law, 229, 255
Maxwell relation, 404
Maxwell’s equations, 231
Maxwell’s relations, 404
Maxwell stress tensor, 272
differential and integral form, 231

mean, 86
mean free path, 239, 424–5
measurement, 328, 332
quantum mechanical, 328
uncertanty of, 332

Meissner effect, 426
mesons, 384
Michelson-Morley experiment, 215
microscope, 300
minimum, 54, 67
in multiple dimensions, 67

Minkowski, 221
mobility, 239
modal field, 313–14
equation for, 314

mode, 302
modulus, 24
moles, 398
moment, 86–9
factorization of, 87
generating function of, 87–9
of probability distribution, 86

moments of inertia, 203, 287
momentum
lattice, 427
of state, 328
relativistic, 224

momentum space, 335, 171, 187, 194,
206, 224, 272, 287, 328, 427

angular, 187
conservation of, 194
density, 272
flux, 287
generalized, 206

monopole, 248
electric, 248

multinomial coefficient, 88
multinomial distribution, 388
multiplication, 12, 248
cross, 12

Neumann functions, 158, 164
spherical, 164

neutrino, 381, 383
Newton, 171–2
Newton’s laws of motion, 170
node, 302
nonlinear, 182

restoring force, 182
nuclear liquid drop model, 380
nuclear magnetic resonance, 381
nuclear pairing interaction, 380
nuclear radius, 380
nuclear shell model, 380
nucleons, 379
nullity, 35

observable, 332
complete set of, 332

occupation probability, 392
octave, 6
ohm, 230, 230
operation, 36

elementary, 36
operator, 50–51, 54, 149, 153, 321, 328,

330–332, 334, 344, 358
commuting, 331
derivative, 50
energy, 321
functions of, 328, 344
Hermitian, 330, 334
in Hilbert space, 334, 54, 328
identity, 328, 334
linear, 51, 328
matrix element of, 334
momentum, 321
ordering of, 328, 332
position, 334
product, 328
raising and lowering, 149, 342, 358
raising and lowering, ladder, 153
transpose, 330, 342

optical axis, 299
optical theorem, 313, 377
orbit, 355

stationary, 355
order, 118

reduction of, 118
orthogonal, 46, 72, 125

coordinate system, 72
orthogonal
transformations, 44

442 INDEX



orthonormal, 46
oscillator, 182, 317
anharmonic, 182, 317

outer product, 294

parabola, 29
parallel, 269
connection, 269, 269

parallel axis theorem, 200
paramagnetic resonance, 363
paramagnetism, 415
parameter, 116
method of variation, 116

parametric representation, 96
Parseval’s relation, 131
Parseval’s theorem, 336
partition function, 393, 395–6, 410
canonical, 395–6
classical, 396
grand canonical, 393, 395
microcanonical, 395, 410

Pascal, 211
Pauli equation, 368
pendulum, 179, 182
periodic motion, 181
period, 285
permittivity, 243
dielectric, 243

permutation, 88
perpendicular axis theorem, 200
perturbation theory, 347–8
degenerate, 347
time-dependent, 348

phase transition, 417, 426
second-order, 417, 426

phase, 412
diagram, 412
of material, 412
space, 111, 206
velocity, 185, 285

phasor, 182, 269, 285
phonons, 400, 424, 426
acoustic and optical, 424

photoelectric effect, 431
photon, 224
pivot, 199
Planck's constant, 318
plane, 24, 29
complex, 24, 29

wave, 286
planetary motion, 191
point, 118–19
charge, 228
regular, 118
regular singular, 119

Poisson bracket, 207
Poisson’s equation, 245
uniqueness of solutions, 245

polarization, 242, 287–9, 309
behavior upon reflection, 309
charge, 242
circular, linear and elliptical, 288
incoherent, 289

polarizer, 288
pole, 98, 101
first-order, 98
higher-order, 101

polycrystalline, 422
polygon, 20
polynomial, 48
characteristic, 48

population inversion, 432
positrons, 381
potential, 190, 210, 235–6, 241, 250,

338, 387, 404, 413
chemical, 387, 413
delta-function, 338
electric, 235
of electric dipole, 241
fluid flow, 210
gravitational, 190
magnetic vector, 250, 236
and superposition, 236
thermodynamic, 404

potential energy, 190
gravitational, 190, 336

power, 174, 267
dissipated in resistor, 267

power series, 328
of operators, 328

Poynting vector, 271, 273, 287
precession, 204, 363
precision, 92
pressure, 287
radiation, 287

primitive cell, 423
principal part, 25, 350
principal rotation axis, 203
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principal sheets, 95, 101
principal values, 95
principle value integration, 103
prism, 300, 320
probability, 389
cross or vector, 39
distribution, 85
dot, 42
dot, scalar or inner, 39
inverse, 14, 39, 41–2
of occupation, 389, 14
outer, 41, 39

proper time, 218
proton-proton cycle, 383
pseudovector, 39, 294
pulley, 178
pulse, 296, 299, 316
broadening of, 296
width of, 296

Pythagoras, 19

Q-factor, 183, 317
quadratic formula, 14
quadrupole, 249, 374
quadrupole moment tensor, 295
quantization condition, 340
quark, 383–4
color of, 384, 402, 409

Q-value, 381
of reaction, 381

radians, 18
radiation, 292, 294–5
electric dipole, 292
fields, 276
magnetic dipole, 294
quadrupole, 295

radioactive decay, 382
radius, 355
Bohr, 355

range, 430
of beam, 430, 223

rationalization, 24
ray, 296
Rayleigh-Jeans law, 401
Rayleigh-Ritz method, 347
Rayleigh’s criterion, 291
reaction channel, 376
realization, 386, 428, 428

recursion, 57
recursion relation, 118, 163

of spherical Bessel functions, 163
reflection, 308–9

amplitude coefficient, 308
coefficient, 301
intensity factor, 308

refrigerator, 409
regression, 91, 91
relativity, 215

Galilean, 215
representation, 336

momentum, 336
residue, 102
resistance, 239
resistivity, 239, 426

of superconductor, 426
resistor, 239–40, 272

in series and parallel, 239, 240
resonant cavity, 316
resonant frequency, 183
reversible process, 403
right-hand rule, 40, 80, 82, 232, 257
Ritz method, 370
Rodrigues’ formula, 205
Rodriguez’s formula, 147
rotation, 205

infinitesimal, 205
matrix, 205

Rutherford model, 354
Rydberg energy, 356

saddle point, 54
scalar, 38, 219
scalar wave equation, 311
scale, 172, 239
scale factors, 74
scattering, 354, 376, 382, 424, 431

elastic, 382
inelastic, 376, 382
Rutherford, 354
time-dependent, 321, 322

Schrodinger formalism, 343
Schrodinger’s equation, 321–2, 326, 357

in atomic units, 357
numerical solution of, 326

scintillation counter, 431
secant, 50
self-adjoint, 124
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semiconductor, 427–8, 433
diode laser, 433
elemental and compound, 427
intrinsic and extrinsic, 428
n and p type, 428

separation, 322
constant, 143
of variables, 140, 322

series, 16–17, 60, 66, 267–9
algebraic, 16
circuit, 267
connection, 268
geometric, 16
impedances, 269
multidimensional Taylor, 66
Taylor, 60
transcendental, 17

sine, 41
law of, 41

skew-symmetric, 44
skin depth, 305
Slater determinant, 354
slit, 289
slope, 28, 62, 77
field, 109
in multiple dimensions, 77
of multivariable function, 62

Snell’s law, 298
solar mass, 193
solenoid, 266
inductance of, 266

solution, 109, 114
of differential equation, general, 109
of differential equation, particular, 109

solution, 109, 114
linearly dependent, 114

space, 35
kernel or null, 35
row, 35

span, 35
spark chamber, 432
special functions, 138
specific heat, 405
spectral line, 356
speed, 38
speed of light, 357
in atomic units, 357

spherical harmonics, 156, 248, 357
addition theorm, 156

spin, 358–9, 369
singlet and triplet states, 369
triplet and singlet states, 359

spin-orbit coupling, 363
spin-orbit interaction, 369
spin-spin interaction, 368
spring, 173, 181
constant, 173

squares, 14, 16
completing, 14
sum of, 16

standard deviation, 86
Stark effect, 365
states, 319, 334, 355, 395, 404
atomic, 319
equations of, 404
generalized, 334
number of, 395
stationary, 355

stationary points, 83, 84
statistical independence, 87
statistical mechanics, 386
statistics, 91, 354, 387
Bose-Einstein, 387
of distinguishable particles, 387
Fermi-Dirac, 387
particle, 354

Stefan-Boltzmann constant, 401
steradians, 73
Stern-Gerlach experiment, 358
Stirling’s approximation, 106, 93
Stokes’ law, 82
Stokes operator, 211
strangeness, 384
streamline, 211
string, 283
Strum-Liouville, 123, 127
Strum-Liouville equation, 134
Green's function of, 134

superconductor, 426
type I and II, 426

supercooling, 422
superposition, 108, 125, 191, 288, 295,

320–321
linear, 125
of particle wavefunctions, 321
principle, 189
of wavefunctions, 320
of waves, 295
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surface charge, 228
surface element, 70
susceptibility, 243
dielectric, 243

synchrotron radiation, 281

tangent, 50
Taylor series, 101
telescope, 301
telsa, 230
temperature, 397, 403, 412
critical, 412
scale of, 403

tension, 173, 283
tensors, 39, 75, 219, 220, 243,

253, 255
dual, 255
Lorentz transformation of, 253
metric, 75, 220
permeability, permittivity, 243

terminal, 239
theorem, 23
fundamental, of algebra, 23

thermal velocity, 239
thermodynamics, 386, 401
thermodynamic square, 404
thin lens equation, 300
Thomas precession, 363
Thompson cross-section, 280
threshold energy, 382
nuclear, 382, 268

time dilation, 217
top, 204
toroidial coil, 258
torque, 187, 200, 241
on electric dipole, 241

trace, 35
transformation, 70, 220
linear, 220
volume element, 70

transformer, 266
transients, 183
transistor, 429
source and drain regions, 429

transmission, 308
coefficient, 301
intensity, 308
line, 273, 313

transport, 419

transpose, 33
transverse electric (TE)

mode, 309, 314
transverse magnetic (TM)

mode, 309, 314
transverse waves, 283
triangle, 18–19

congruent, 18
equilateral, 19
isosceles, 19
right, 19
similar, 19

tridiagonal, 13
trigonometry, 21
triple point, 412
tritium, 379
trueness, 92
turbulence, 210
turning point, 340

undetermined coefficients, 115
method of, 115

unit, 230
cell, 423
electrical, 230

unitary transformations, 45

vacancy, 428
valence band, 428
van der Waals gas, 408
variable, 85, 404

random, 85
thermodynamic, 404

variance, 86, 92
vector, 29, 38, 40, 42, 69, 219

identities, 41, 81
normal to a plane, 40, 42, 69
space-time, 219
sum and difference of, 38
unit, 38

velocity, 38, 171, 185, 205, 223,
228, 285, 295

angular, 185, 205
field, 228, 223
group, 295
phase, 295
wave, 285, 196

viscosity, 210, 213, 420
coefficient of, 420
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voltage, 166, 239
drop, 239

volt, 235
volume, 31, 70, 73, 218
of hypersphere, 73
of solid of revolution, 70
space-time, 218

Watt, 174
wave, 284, 303, 400
shear and compression, 400
shock, 303
velocity of, 284

wave equation, 185, 251,
283, 286

covariant, 251
electromagnetic, 286
scalar, 283

wavefront, 296, 319–20
of particle beam, 320
units of, 320

waveguide, 313
dispersion, 316
units of, 313

wavelength, 285
wavenumber, 285–6, 320
wavevector, 285–6, 320
webers, 230
weight, 172, 401
weight factor, 123
wire, 228
WKB approximation, 339
WKB method, 368
work, 174, 221, 258
function, 177
performed by magnetic field, 258

work–energy theorem, 225
Wronskian, 114

x-ray, 356, 423

Young’s modulus, 184, 283

Zeeman splitting, 366
zeros, 104
in complex plane, 104

z-transform, 137
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